David Sang

Cambridge IGCSE®

Physics
Coursebook

Second edition

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010 Second edition 2014

Printed in the United Kingdom by Latimer Trend

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-61458-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

NOTICE TO TEACHERS IN THE UK

It is illegal to reproduce any part of this work in material form (including photocopying and electronic storage) except under the following circumstances:

- where you are abiding by a licence granted to your school or institution by the Copyright Licensing Agency;
- (ii) where no such licence exists, or where you wish to exceed the terms of a licence, and you have gained the written permission of Cambridge University Press;
- (iii) where you are allowed to reproduce without permission under the provisions of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for example, the reproduction of short passages within certain types of educational anthology and reproduction for the purposes of setting examination questions.

All end-of-chapter questions taken from past papers are reproduced by permission of Cambridge International Examinations.

Example answers and all other end-of-chapter questions were written by the author.

® IGCSE is the registered trademark of Cambridge International Examinations.

Cambridge International Examinations bears no responsibility for the example answers to questions taken from its past question papers which are contained in this publication; all answers were written by the author.

Contents

Introduction	V	6 Energy transformations and	
		energy transfers	79
Block 1: General physics	1	6.1 Forms of energy	80
		6.2 Energy conversions	83
1 Making measurements	2	6.3 Conservation of energy	84
1.1 Measuring length and volume	3	6.4 Energy calculations	87
1.2 Improving precision in measurements	5		0.6
1.3 Density	6	7 Energy resources	96
1.4 Measuring time	9	7.1 The energy we use	96
2 Describing motion	15	7.2 Energy from the Sun	101
_	16	8 Work and power	104
2.1 Understanding speed	20	8.1 Doing work	104
2.2 Distance-time graphs			104
2.3 Understanding acceleration	21 24	8.2 Calculating work done8.3 Power	103
2.4 Calculating speed and acceleration	2 4		109
3 Forces and motion	34	8.4 Calculating power	109
3.1 We have lift-off	35	Block 2: Thermal physics	115
3.2 Mass, weight and gravity	37		
3.3 Falling and turning	40	9 The kinetic model of matter	116
3.4 Force, mass and acceleration	41	9.1 States of matter	117
3.5 The idea of momentum	44	9.2 The kinetic model of matter	119
3.6 More about scalars and vectors	46	9.3 Forces and the kinetic theory	123
"Turning offects of forces	E2	9.4 Gases and the kinetic theory	125
4 Turning effects of forces	52	10 Thormal proportion of matter	132
4.1 The moment of a force	53	10 Thermal properties of matter	
4.2 Calculating moments	55 57	10.1 Temperature and temperature scales	133
4.3 Stability and centre of mass	57	10.2 Designing a thermometer	135
5 Forces and matter	64	10.3 Thermal expansion10.4 Thermal capacity	137 140
5.1 Forces acting on solids	64	10.4 Thermal capacity 10.5 Specific heat capacity	140
5.2 Stretching springs	65	10.6 Latent heat	140
5.3 Hooke's law	67	10.0 Latent neat	144
5.4 Pressure	69	11 Thermal (heat) energy transfers	149
5.5 Calculating pressure	72	11.1 Conduction	150
		11.2 Convection	152
		11.3 Radiation	155
		11.4 Some consequences of thermal (heat)	
		energy transfer	157

Block 3: Physics of waves	165	20 Electromagnetic forces	28 1
12 Sound	166	20.1 The magnetic effect of a current	282
12.1 Making sounds	167	20.2 How electric motors are constructed	284
12.2 At the speed of sound	168	20.3 Force on a current-carrying conductor	285
12.3 Seeing sounds	170	21 Electromagnetic induction	292
12.4 How sounds travel	173	21.1 Generating electricity	292
12.1 11011 Oddido travel	175	21.1 Generating electricity 21.2 Power lines and transformers	293 297
13 Light	178	21.3 How transformers work	300
13.1 Reflecting light	179	21.5 from transformers work	300
13.2 Refraction of light	182	Block 5: Atomic physics	307
13.3 Total internal reflection	187	block 5. Atoline physics	307
13.4 Lenses	191	22 The nuclear atom	308
1 // Droporties of ways	200	22.1 Atomic structure	309
14 Properties of waves	200	22.2 Protons, neutrons and electrons	311
14.1 Describing waves	201	22 De line allata	210
14.2 Speed, frequency and wavelength	205	23 Radioactivity	318
14.3 Explaining wave phenomena	206	23.1 Radioactivity all around	319
15 Spectra	214	23.2 The microscopic picture	321
15.1 Dispersion of light	215	23.3 Radioactive decay	325
15.2 The electromagnetic spectrum	216	23.4 Using radioisotopes	327
2002 2000 on agreete op cett uit.	210	Answers to questions	336
Block 4: Electricity and		Appendix 1	348
magnetism	223	Appendix 2	350
16 Magnetism	224	Glossary	351
16.1 Permanent magnets	225	-	
16.2 Magnetic fields	228	Index	357
17 Static electricity	234	Acknowledgements	367
17.1 Charging and discharging	235	Terms and Conditions of use for	
17.2 Explaining static electricity	236	the CD-ROM	368
17.3 Electric fields and electric charge	239		300
18 Electrical quantities	244	CD-ROM Study and revisions skills	
18.1 Current in electric circuits	245	Self-assessment practice tests	
18.2 Electrical resistance	243	Multiple choice tests	
18.3 More about electrical resistance	252	Practice exam-style papers and marking schen	nes
18.4 Electricity and energy	254	Glossary	
10.1 Electricity and energy	234	Notes on activities for teachers/technicians	
19 Electric circuits	260	Self-assessment checklists	
19.1 Circuit components	261	Activities	
19.2 Combinations of resistors	266	Answers to Coursebook end-of chapter questi	ons
19.3 Electronic circuits	270	Revision checklists	
19.4 Electrical safety	273	Animations	

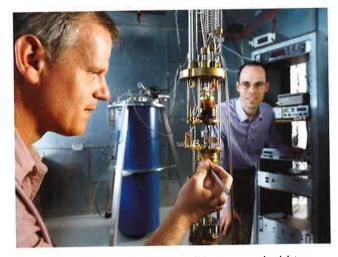
Introduction

Studying physics

Why study physics? Some people study physics for the simple reason that they find it interesting. Physicists study matter, energy and their interactions. They might be interested in the tiniest sub-atomic particles, or the nature of the Universe itself. (Some even hope to discover whether there are more universes than just the one we live in!)

On a more human scale, physicists study materials to try to predict and control their properties. They study

When they were first discovered, X-rays were sometimes treated as an entertaining novelty. Today, they can give detailed views of a patient's bones and organs.

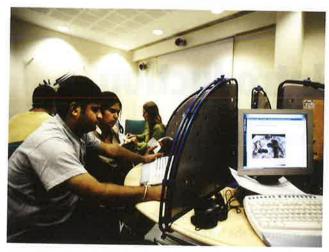

the interactions of radiation with matter, including the biological materials we are made of.

Some people do not want to study physics simply for its own sake. They want to know how it can be used, perhaps in an engineering project, or for medical purposes. Depending on how our knowledge is applied, it can make the world a better place.

Some people study physics as part of their course because they want to become some other type of scientist – perhaps a chemist, biologist or geologist. These branches of science draw a great deal on ideas from physics, and physics may draw on them.

Thinking physics

How do physicists think? One of the characteristics of physicists is that they try to simplify problems – reduce them to their basics – and then solve them by applying some very fundamental ideas. For example, you will be familiar with the idea that matter is made of tiny particles that attract and repel each other and move about. This is a very powerful idea, which has helped us to understand the behaviour of matter, how sound travels, how electricity flows, and so on.


Physicists often work in extreme conditions. Here, physicists at the UK's National Physical Laboratory prepare a dilution refrigerator, capable of cooling materials down almost to absolute zero, the lowest possible temperature.

A computer-generated view of the Milky Way, our Galaxy. Although we can never hope to see it from this angle, careful measurements of the positions of millions of stars has allowed astronomers to produce this picture.

Once a fundamental idea is established, physicists look around for other areas where it might help to solve problems. One of the surprises of 20th-century physics was that, once physicists had begun to understand the fundamental particles of which atoms are made, they realised that this helped to explain the earliest moments in the history of the Universe, at the time of the Big Bang.

The more you study physics, the more you will come to realise how the ideas join up. Also, physics is still expanding. Many physicists work in economics and finance, using ideas from physics to predict how markets will change. Others use their understanding of

The internet, used by millions around the world. Originally invented by a physicist, Tim Berners-Lee, the internet is used by physicists to link thousands of computers in different countries to form supercomputers capable of handling vast amounts of data.

particles in motion to predict how traffic will flow, or how people will move in crowded spaces.

Physics relies on mathematics. Physicists measure quantities and process their data. They invent mathematical models – equations and so on – to explain their findings. (In fact, a great deal of mathematics was invented by physicists, to help them to understand their experimental results.)

Computers have made a big difference in physics. Because a computer can 'crunch' vast quantities of data, whole new fields of physics have opened up. Computers can analyse data from telescopes, control distant spacecraft and predict the behaviour of billions of atoms in a solid material.

Joining in

So, when you study physics, you are doing two things.
(i) You are joining in with a big human project – learning more about the world around us, and applying that knowledge. (ii) At the same time, you will be learning to think like a physicist – how to apply some basic ideas, how to look critically at data, and how to recognise underlying patterns. Whatever your aim, these ideas can stay with you throughout your life.

Block 1

General physics

In your studies of science, you will already have come across many of the fundamental ideas of physics. In this block, you will develop a better understanding of two powerful ideas: (i) the idea of force and (ii) the idea of energy.

Where do ideas in physics come from? Partly, they come from observation. When Galileo looked at the planets through his telescope, he observed the changing face of Venus. He also saw that Jupiter had moons. Galileo's observations formed the basis of a new, more scientific, astronomy.

Ideas also come from thought. Newton (who was born in the year that Galileo died) is famous for his ideas about gravity. He realised that the force that pulls an apple to the ground is the same force that keeps the Moon in its orbit around the Earth. His ideas about forces are explored in this block.

You have probably studied some basic ideas about energy. However, Newton never knew about energy. This was an idea that was not developed until more than a century after his death, so you are already one step ahead of him!

In 1992, a spacecraft named *Galileo* was sent to photograph Jupiter and its moons. On its way, it looked back to take this photograph of the Earth and the Moon.

1 Making measurements

In this chapter, you will find out:

- how to make measurements of length, volume and time
- how to increase the precision of measurements of length and time
- how to determine the densities of solids and liquids.

How measurement improves

Galileo Galilei did a lot to revolutionise how we think of the world around us, and in particular how we make measurements. For example, he observed a lamp swinging. Galileo noticed that the time it took for each swing was the same, whether the lamp was swinging through a large or a small angle. He realised that a swinging weight – a pendulum – could be used as a timing device. He designed a clock regulated by a swinging pendulum.

In Galileo's day, many measurements were based on the human body – for example, the foot and the yard (a pace). Units of weight were based on familiar objects such as cereal grains. These 'natural' units are inevitably variable – one person's foot is longer than another's – so efforts were made to standardise them.

Today, there are international agreements on the basic units of measurement. For example, the metre is defined as the distance travelled by light in $\frac{1}{299792458}$ second in a vacuum. Laboratories around the world are set up to check that measuring devices

match this standard. Figure 1.1 shows a new atomic clock, undergoing development at the UK's National Physical Laboratory. Clocks like this are accurate to 1 part in 10¹⁴, or one-billionth of a second in a day.

You might think that this is far more precise than we could ever need. In fact, if you use a 'satnav' device

Figure 1.1 Professor Patrick Gill of the National Physical Laboratory is devising an atomic clock that will be 1000 times more accurate than previous types.

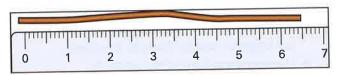
to find your way around, you rely on ultra-precise time measurements. A 'satnav' detects radio signals from satellites orbiting the Earth, and works out your position to within a fraction of a metre. Light travels one metre in about $\frac{1}{300000000}$ second, or 0.000 000 0033 second. So, if you are one metre further away from the satellite, the signal will

o.0000000033 second. So, if you are one metre further away from the satellite, the signal will arrive this tiny fraction of a second later. Hence the electronic circuits of the 'satnav' device must measure the time at which the signal arrives to this degree of accuracy.

1.1 Measuring length and volume

In physics, we make measurements of many different lengths – for example, the length of a piece of wire, the height of liquid in a tube, the distance moved by an object, the diameter of a planet or the radius of its orbit. In the laboratory, lengths are often measured using a rule (such as a metre rule).

Measuring lengths with a rule is a familiar task. But when you use a rule, it is worth thinking about the task and just how reliable your measurements may be. Consider measuring the length of a piece of wire (Figure 1.2).


- The wire must be straight, and laid closely alongside the rule. (This may be tricky with a bent piece of wire.)
- Look at the ends of the wire. Are they cut neatly, or are they ragged? Is it difficult to judge where the wire begins and ends?
- Look at the markings on the rule. They are probably 1 mm apart, but they may be quite wide. Line one end of the wire up against the zero of the scale. Because of the width of the mark, this may be awkward to judge.
- Look at the other end of the wire and read the scale.
 Again, this may be tricky to judge.

Now you have a measurement, with an idea of how precise it is. You can probably determine the length of the wire to within a millimetre. But there is something else to think about – the rule itself. How sure can you be that it is correctly calibrated? Are the marks at the ends of a metre rule separated by exactly one metre? Any error in this will lead to an inaccuracy (probably small) in your result.

The point here is to recognise that it is always important to think critically about the measurements you make, however straightforward they may seem. You have to consider the method you use, as well as the instrument (in this case, the rule).

More measurement techniques

If you have to measure a small length, such as the thickness of a wire, it may be better to measure several thicknesses and then calculate the average. You can use the same approach when measuring something very

Figure 1.2 Simple measurements – for example, finding the length of a wire – still require careful technique.

thin, such as a sheet of paper. Take a stack of 500 sheets and measure its thickness with a rule (Figure 1.3). Then divide by 500 to find the thickness of one sheet.

For some measurements of length, such as curved lines, it can help to lay a thread along the line. Mark the thread at either end of the line and then lay it along a rule to find the length. This technique can also be used for measuring the circumference of a cylindrical object such as a wooden rod or a measuring cylinder.

Measuring volumes

There are two approaches to measuring volumes, depending on whether or not the shape is regular.

For a regularly shaped object, such as a rectangular block, measure the lengths of the three different sides and multiply them together. For objects of other regular shapes, such as spheres or cylinders, you may have to make one or two measurements and then look up the formula for the volume.

For liquids, measuring cylinders can be used. (Recall that these are designed so that you look at the scale *horizontally*, not at an oblique angle, and read the level of the *bottom* of the meniscus.) Think carefully about the choice of cylinder. A 1 dm³ cylinder is unlikely to be suitable for measuring a small volume such as 5 cm³. You will get a more accurate answer using a 10 cm³ cylinder.

Measuring volume by displacement

Most objects do not have a regular shape, so we cannot find their volumes simply by measuring the lengths

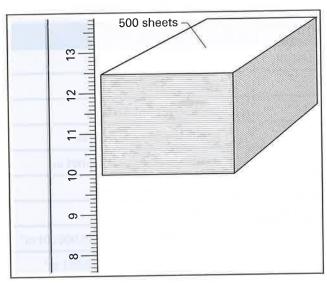


Figure 1.3 Making multiple measurements.

of their sides. Here is how to find the volume of an irregularly shaped object. This technique is known as measuring volume by displacement.

- ◆ Select a measuring cylinder that is about three or four times larger than the object. Partially fill it with water (Figure 1.4), enough to cover the object. Note the volume of the water.
- ◆ Immerse the object in the water. The level of water in the cylinder will increase. The increase in its volume is equal to the volume of the object.

Units of length and volume

In physics, we generally use SI units (this is short for *Le Système International d'Unités* or The International System of Units). The SI unit of length is the metre (m). Table 1.1 shows some alternative units of length, together with some units of volume. Note that the litre and millilitre are not official SI units of volume, and so are not used in this book. One litre (11) is the same as 1 dm³, and one millilitre (1 ml) is the same as 1 cm³.

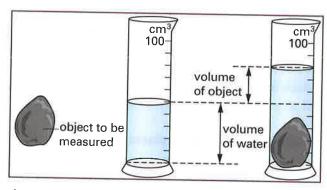


Figure 1.4 Measuring volume by displacement.

Quantity	Units	
Length	metre (m)	
	1 decimetre $(dm) = 0.1 m$	
	1 centimetre (cm) = 0.01 m	
	1 millimetre (mm) = 0.001 m	
	1 micrometre (μ m) = 0.000 001 m	
	1 kilometre (km) = 1000 m	
Volume	cubic metre (m³)	
	1 cubic centimetre (cm 3) = 0.000 001 m 3	
	1 cubic decimetre $(dm^3) = 0.001 m^3$	

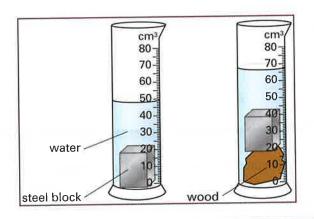
Table 1.1 Some units of length and volume in the SI system.

Study tip

Remember that the unit is as important as the numerical value of a quantity. Take care when reading and writing units. For example, if you write mm instead of cm, your answer will be wrong by a factor of ten.

Activity 1.1 Measuring lengths and volumes

Skills


- A03.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- AO3.3 Make and record observations, measurements and estimates
- A03.4 Interpret and evaluate experimental observations and data
- A03.5 Evaluate methods and suggest possible improvements

Practise measuring lengths and volumes. As you do so, evaluate the method you are using.

- 1 Measure the length of a toy block.
- 2 Place ten blocks side-by-side in a row. Measure the length of the row and calculate the average length of one block.
- 3 Write a comment about these two methods for finding the length of a block. Which is better, and why?
- 4 Repeat steps 1 and 2 to find the average diameter of a ball-bearing and the average thickness of the wire.
- 5 Evaluate the methods you have used.
- **6** Measure the three sides of a rectangular block and calculate its volume.
- 7 Measure the volume of the same block by displacement. Is one method better than the other? Give a reason for your answer.
- 8 Look at the pebble and compare it with the block. Is it bigger or smaller? Estimate its volume.
- 9 Measure the volume of the pebble by displacement. How good was your estimate?

Questions

- 1.1 A rectangular block of wood has dimensions 240 mm×20.5 cm×0.040 m. Calculate its volume in cm³.
- **1.2** Ten identical lengths of wire are laid closely side-by-side. Their combined width is measured and found to be 14.2 mm. Calculate:
 - a the radius of a single wire
 - **b** the volume in mm³ of a single wire if its length is 10.0 cm (volume of a cylinder = $\pi r^2 h$, where r = radius and h = height).
- **1.3** The volume of a piece of wood (which floats in water) can be measured as shown. Write a brief paragraph to describe the procedure. State the volume of the wood.

1.2 Improving precision in measurements

A rule is a simple measuring instrument, with many uses. However, there are instruments designed to give greater precision in measurements. Here we will look at how to use two of these.

Vernier calipers

The calipers have two scales, the main scale and the vernier scale. Together, these scales give a measurement of the distance between the two inner faces of the jaws (Figure 1.5).

The method is as follows:

 Close the calipers so that the jaws touch lightly but firmly on the sides of the object being measured.

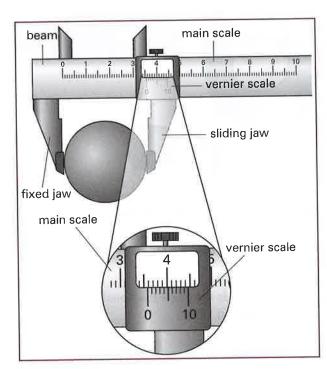


Figure 1.5 Using vernier calipers.

- ◆ Look at the zero on the vernier scale. Read the main scale, just to the left of the zero. This tells you the length in millimetres.
- ♦ Now look at the vernier scale. Find the point where one of its markings is *exactly* aligned with one of the markings on the main scale. Read the value on the vernier scale. This tells you the fraction of a millimetre that you must add to the main scale reading.

For the example in Figure 1.5:

thickness of rod

- = main scale reading + vernier reading
- $= 35 \, \text{mm} + 0.7 \, \text{mm}$
- $= 35.7 \, \text{mm}$

Micrometer screw gauge

Again, this has two scales. The main scale is on the shaft, and the fractional scale is on the rotating barrel. The fractional scale has 50 divisions, so that one complete turn represents 0.50 mm (Figure 1.6).

The method is as follows:

- Turn the barrel until the jaws just tighten on the object. Using the friction clutch ensures just the right pressure.
- Read the main scale to the nearest 0.5 mm.
- Read the additional fraction of a millimetre from the fractional scale.

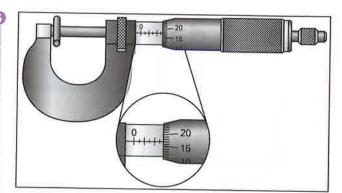
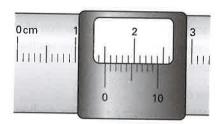


Figure 1.6 Using a micrometer screw gauge.


For the example in Figure 1.6:

thickness of rod

- = main scale reading + fractional scale reading
- $= 2.5 \,\mathrm{mm} + 0.17 \,\mathrm{mm}$
- $= 2.67 \, \text{mm}$

Question

- **1.4** State the measurements shown in the diagrams on the scale of:
 - **a** the vernier calipers

b the micrometer screw gauge.

1.3 Density

Our eyes can deceive us. When we look at an object, we can judge its volume. However, we can only guess its mass. We may guess incorrectly, because we misjudge the density. You may offer to carry someone's bag, only

to discover that it contains heavy books. A large box of chocolates may have a mass of only $200\,\mathrm{g}$ – a great disappointment!

The **mass** of an object is the amount of matter it is made of. Mass is measured in kilograms. But **density** is a property of a material. It tells us how concentrated its mass is. (There is more about the meaning of *mass* and how it differs from *weight* in Chapter 3.)

In everyday speech, we might say that lead is *heavier* than wood. We mean that, given equal volumes of lead and wood, the lead is heavier. In scientific terms, the density of lead is greater than the density of wood. So we define density as shown, in words and as an equation.

Key definition

density – the ratio of mass to volume for a substance.

density =
$$\frac{\text{mass}}{\text{volume}}$$

$$\rho = \frac{M}{V}$$

The symbol for density is ρ , the Greek letter rho. The SI unit of density is kg/m³ (kilograms per cubic metre). You may come across other units, as shown in Table 1.2. A useful value to remember is the density of water (Table 1.3):

density of water = $1000 \, \text{kg/m}^3$

Study tip

It is important to be able to recall equations such as density = mass/volume. You may recall this in words, or in symbols ($\rho = M/V$). An alternative is to recall the units of density, such as kg/m³. This should remind you that density is a mass divided by a volume.

Values of density

Some values of density are shown in Table 1.3. Here are some points to note:

 Gases have much lower densities than solids or liquids.

Unit of mass	Unit of volume	Unit of density	Density of water
kilogram, kg	cubic metre, m³	kilograms per cubic metre	1000 kg/m³
kilogram, kg	cubic decimetre, dm³	kilograms per cubic decimetre	1.0 kg/dm³
gram, g	cubic centimetre, cm ³	grams per cubic centimetre	1.0 g/cm ³

Table 1.2 Units of density.

	Material	Density / kg / m³
Gases	air	1.29
	hydrogen	0.09
	helium	0.18
	carbon dioxide	1.98
Liquids	water	1000
	alcohol (ethanol)	790
	mercury	13 600
Solids	ice	920
	wood	400-1200
	polythene	910-970
	glass	2500-4200
	steel	7500-8100
	lead	11 340
	silver	10 500
	gold	19 300

Table 1.3 Densities of some substances. For gases, these are given at a temperature of 0°C and a pressure of 1.0×10^5 Pa.

- Density is the key to floating. Ice is less dense than water. This explains why icebergs float in the sea, rather than sinking to the bottom.
- ♦ Many materials have a range of densities. Some types of wood, for example, are less dense than water and will float. Others (such as mahogany) are more dense and sink. The density depends on the composition.

- ◆ Gold is denser than silver. Pure gold is a soft metal, so jewellers add silver to make it harder. The amount of silver added can be judged by measuring the density.
- ◆ It is useful to remember that the density of water is 1000 kg/m³, 1 kg/dm³ or 1.0 g/cm³.

Calculating density

To calculate the density of a material, we need to know the mass and volume of a sample of the material.

Worked example 1.1

A sample of ethanol has a volume of 240 cm³. Its mass is found to be 190.0 g. What is the density of ethanol?

Step 1: Write down what you know and what you want to know.

mass
$$M = 190.0 \,\mathrm{g}$$

volume $V = 240 \,\mathrm{cm}^3$
density $D = ?$

Step 2: Write down the equation for density, substitute values and calculate *D*.

$$D = \frac{M}{V}$$

$$= \frac{190}{240}$$

$$= 0.79 \text{ g/cm}^3$$

Measuring density

The easiest way to determine the density of a substance is to find the mass and volume of a sample of the substance.

For a solid with a regular shape, find its volume by measurement (see section 1.1). Find its mass using a balance. Then calculate the density.

Figure 1.7 shows one way to find the density of a liquid. Place a measuring cylinder on a balance. Set the balance to zero. Now pour liquid into the cylinder. Read the volume from the scale on the cylinder. The balance shows the mass.

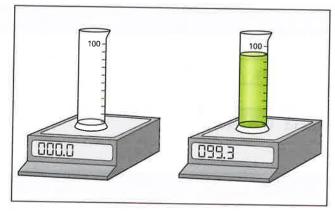


Figure 1.7 Measuring the density of a liquid.

Activity 1.2 Measuring density

Skills

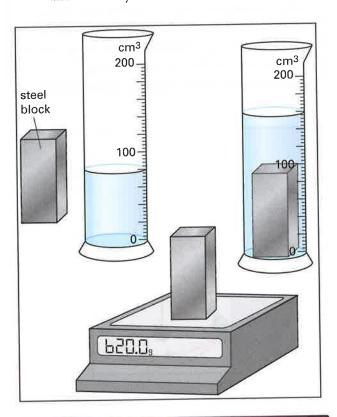
AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

In this experiment, you are going to make measurements to determine the densities of some different materials. Use blocks that have a regular shape.

- 1 Start by comparing two blocks of different materials by hand, as shown. Can you tell which is the more dense? Can you put them all in order, from least dense to most dense? (This will be relatively easy if the blocks are all the same size, but you will still be able to make a judgement for blocks of different sizes.)
- 2 Use a balance to find the mass of each block.


- 3 Use a rule to measure the dimensions of the block. (If they are cubes, you should check that the sides are truly equal.)
- 4 Calculate the volume and density for each block. For repeated calculations like this, it helps to record your results and calculations in a table like the one shown. Alternatively, if you have access to a computer with a spreadsheet program, devise a spreadsheet that will perform the calculations for you.
- 5 Compare the results of your measurements with your earlier judgements. Did you put the materials in the correct order?

Material	Mass/g	Length/cm	Width/cm	Height/cm	Volume / cm³	Density/g/cm³
cheddar cheese	20.7	2.4	2.5	3.0	18.0	1.15

Questions

- 1.5 Calculate the density of mercury if 500 cm³ has a mass of 6.60 kg. Give your answer in g/cm³.
- **1.6** A steel block has mass 40 g. It is in the form of a cube. Each edge of the cube is 1.74 cm long. Calculate the density of the steel.
- 1.7 A student measures the density of a piece of steel. She uses the method of displacement to find its volume. Her measurements are shown in the diagram. Calculate the volume of the steel and its density.

1.4 Measuring time

The athletics coach in Figure 1.8 is using her stopwatch to time a sprinter. For a sprinter, a fraction of a second (perhaps just 0.01 s) can make all the difference between winning and coming second or third. It is different in a marathon, where the race lasts for more than two hours and the runners are timed to the nearest second.

Figure 1.8 The female athletics coach uses a stopwatch to time a sprinter, who can then learn whether she has improved.

In the lab, you might need to record the temperature of a container of water every minute, or find the time for which an electric current is flowing. For measurements like these, stopclocks and stopwatches can be used. You may come across two types of timing device:

- ♦ An *analogue* clock is like a traditional clock whose hands move round the clock's face. You find the time by looking at where the hands are pointing on the scale.
- ♦ A *digital* clock is one that gives a direct reading of the time in numerals. For example, a digital stopwatch might show a time of 23.45 s.

When studying motion, you may need to measure the time taken for a rapidly moving object to move between two points. In this case, you might use a device called a light gate connected to an electronic timer. This is similar to the way in which runners are timed in major athletics events. An electronic timer starts when the marshal's gun is fired, and stops as the runner crosses the finishing line.

There is more about how to use electronic timing instruments in Chapter 2.

Measuring short intervals of time

Figure 1.9 shows a typical lab pendulum. A weight, called a 'bob', hangs on the end of a string. The string is clamped tightly at the top between two wooden 'jaws'. If you pull the bob gently to one side and release it, the pendulum will swing from side to side.

The time for one swing of a pendulum (from left to right and back again) is called its **period**. A single

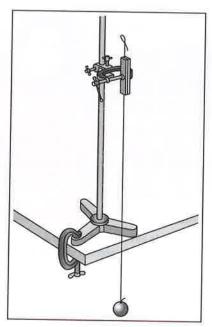


Figure 1.9 A simple pendulum.

period is usually too short a time to measure accurately. However, because a pendulum swings at a steady rate, you can use a stopwatch to measure the time for a large number of swings (perhaps 20 or 50), and calculate the average time per swing. Any inaccuracy in the time at which the stopwatch is started and stopped will be much less significant if you measure the total time for a large number of swings.

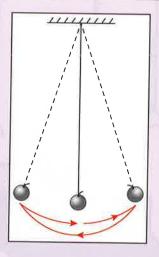
Study tip

Remember that 'one complete swing' of a pendulum is from one side to the other and back again. When using a stopwatch, it may be easier to start timing when the pendulum passes through the midpoint of its swing. Then one complete swing is to one side, to the other side, and back to the midpoint.

Activity 1.3 The period of a pendulum

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)


AO3.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

In this experiment, you will measure the time for one complete swing of the pendulum. You will need a stopwatch to time the swings. You may have a watch or mobile phone that can act as a digital stopwatch. One complete swing of a pendulum is from the centre to the right, to the left, and back to the centre. The time for this is the period of the pendulum.

1 Set the pendulum swinging. It is easier to start and stop the watch when the pendulum passes through the middle of its swing, that is, when the string is vertical. Measure the time for a single complete swing. Repeat this ten times. How much do your values vary? Now calculate the average.

- 2 Time a sequence of 20 complete swings and find the average time for one swing.
- 3 Repeat step 2. Do your answers differ by much?
- 4 A student has noticed that, if the pendulum is shorter, it swings more quickly. She has an idea and says: 'If we halve the length of the string, the period of the pendulum will also be halved'. Test this idea.
- 5 Devise a means of testing Galileo's idea, mentioned at the start of this chapter, that the period of a pendulum does not depend on the size of its swing.

Questions

- **1.8** Many television sets show 25 images, called 'frames', each second. What is the time interval between one frame and the next?
- 1.9 A pendulum is timed, first for 20 swings and then for 50 swings:

time for 20 swings = 17.4 stime for 50 swings = 43.2 s

Calculate the average time per swing in each case. The answers are slightly different. Suggest some possible experimental reasons for this.

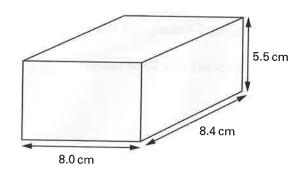
Summary

You should know:

- how to measure length, volume, mass and time
- how to measure small quantities
- that special instruments are available to measure with greater precision
 - all about density.

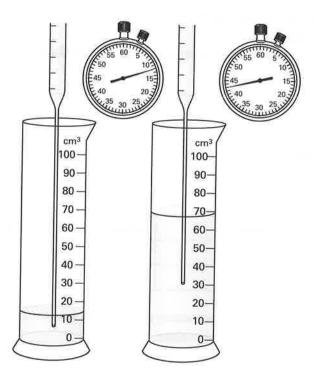
End-of-chapter questions

1 The table shows four quantities that you may have to measure in physics. Copy the table and complete it by listing one or more measuring instruments for each of these quantities.


Mass	Length	Volume	Time
			V

- 2 To find the density of a substance, we need to measure the mass and volume of a sample of the substance.
 - **a** Write the equation that links these three quantities.
 - **b** The units of density depend on the units we use when measuring mass and volume. Copy and complete the table to show the correct units for density.

Unit of mass	Unit of volume	Unit of density
kg	m³	
g	cm ³	


- 3 a Name two instruments that are used for measuring small lengths, such as the thickness of a wire.
 - **b** A tap is dripping. The drops fall at regular intervals of time. Describe how you would find an accurate value for the time between drops.

4 An ice cube has the following dimensions.

Its mass is 340 g. Calculate:

- a its volume
- b its density. [3]
- 5 A student is collecting water as it runs into a measuring cylinder. She uses a clock to measure the time interval between measurements. The level of the water in the cylinder is shown at two times, together with the clock at these times.

Calculate:

- a the volume of water collected between these two times
- **b** the time interval.

[2] [2] 6 A student is measuring the density of a liquid. He places a measuring cylinder on a balance and records its mass. He then pours liquid into the cylinder and records the new reading on the balance. He also records the volume of the liquid.

Mass of empty cylinder = 147 gMass of cylinder + liquid = 203 g

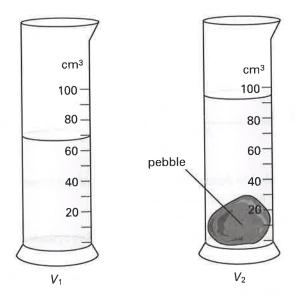
Volume of liquid $= 59 \,\mathrm{cm}^3$

Using the results shown, calculate the density of the liquid.

- [5]
- 7 The inside of a sports hall measures 80 m long by 40 m wide by 15 m high. The air in it has a density of 1.3 kg/m³ when it is cool.
 - a Calculate the volume of the air in the sports hall, in m³.

[3]

b Calculate the mass of the air. State the equation you are using.


[3]

- 8 A geologist needs to measure the density of an irregularly shaped pebble.
 - a Describe how she can find its volume by the method of displacement.

[4]

b What other measurement must she make if she is to find its density?

- [1]
- 9 An IGCSE student thinks it may be possible to identify different rocks (A, B and C) by measuring their densities. She uses an electronic balance to measure the mass of each sample and uses the 'displacement method' to determine the volume of each sample. The diagram shows her displacement results for sample A.

- a State the volume shown in each measuring cylinder.
- **b** Calculate the volume *V* of the rock sample A.
- c Sample A has a mass of 102 g. Calculate its density.

- [2]
- [2]
- [3]

The table shows the student's readings for samples B and C.

Sample	<i>m</i> / g	/	/	V/	Density /
В	144	80	44	20000000	*****
С	166	124	71	******	

- d Copy and complete the table by inserting the appropriate column headings and units, and calculating the densities.
- 10 A flask with a tap has a volume of 200 cm³.

When full of air, the flask has a mass of 30.98 g.

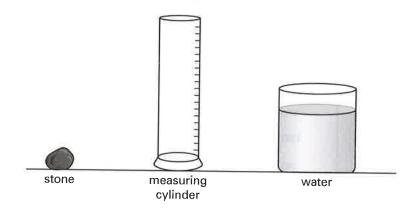
The flask is connected to a vacuum pump, the air is pumped out and then the tap is closed.

The flask now has a mass of 30.72 g.

Calculate:

 ${\bf a}$ the mass of the air in the flask before connecting to the vacuum pump, in ${\bf g}$

[2]


b the density of the air in the flask.

[4]

[12]

[Cambridge IGCSE® Physics 0625/23, Question 5, October/November, 2011]

11 The volume of a stone is to be found using the equipment illustrated.

The following five steps are intended to describe how the volume of the stone is found.

Copy and complete the sentences by adding appropriate words.

a Pour some into the measuring cylinder.

[1]

Take the reading of the from the scale on the measuring cylinder.

[1]

Carefully put into the measuring cylinder.

[1]

Take the new reading of the from the scale on the measuring cylinder.

[1]

Calculate the volume of the stone by

[2]

[Cambridge IGCSE® Physics 0625/22, Question 1, May/June, 2011]

2 Describing motion

In this chapter, you will find out:

- how to interpret distance—time and speed—time graphs
- ♦ how to calculate speed and distance
- S how to calculate acceleration
- the difference between scalar and vector quantities.

Measuring speed

If you travel on a major highway or through a large city, the chances are that someone is watching you (see Figure 2.1). Cameras on the verge and on overhead gantries keep an eye on traffic as it moves along. Some cameras are there to monitor the flow, so that traffic managers can take action when blockages develop, or when accidents occur. Other cameras are equipped with sensors to spot speeding motorists, or those who break the law at traffic lights. In some

busy places, traffic police may observe the roads from helicopters.

Drivers should know how fast they are moving – they have a speedometer to tell them their speed at any instant in time. Traffic police can use a radar speed 'gun' to give them an instant readout of another vehicle's speed (such 'guns' use the Doppler effect to measure a car's speed). Alternatively, traffic police may time a car between two fixed points on the road. Knowing the distance between the two points, they can calculate the car's speed.

Figure 2.1 Traffic engineers use sophisticated cameras and computers to monitor traffic. Understanding how drivers behave is important not only for safety, but also to improve the flow of traffic.

2.1 Understanding speed

In this chapter, we will look at ideas of motion and speed. In Chapter 3, we will look at how physicists came to understand the forces involved in motion, and how to control them to make our everyday travel possible.

Distance, time and speed

As we have seen, there is more than one way to determine the **speed** of a moving object, which is defined as shown.

Key definition

speed – the distance travelled by an object per unit time.

$$speed = \frac{distance}{time}$$

Several methods to determine speed rely on making two measurements:

- the *total distance* travelled between two points
- the *total time* taken to travel between these two points.

We can then work out the **average speed** between the two points:

average speed =
$$\frac{\text{total distance}}{\text{total time}}$$

We can use the equation for speed in the definition when an object is travelling at a constant speed. If it travels 10 m in 1 s, it will travel 20 m in 2 s. Its speed is 10 m/s.

Notice that the other equation tells us the vehicle's average speed. We cannot say whether it was travelling at a steady speed, or if its speed was changing. For example, you could use a stopwatch to time a friend cycling over a fixed distance – say, 100 m (see Figure 2.2). Dividing distance by time would tell you their average speed, but they might have been speeding up or slowing down along the way.

Table 2.1 shows the different units that may be used in calculations of speed. SI units are the 'standard' units used in physics (SI is short for *Le Système International d'Unités* or The International System of Units). In practice, many other units are used. In US

Figure 2.2 Timing a cyclist over a fixed distance. Using a stopwatch involves making judgements as to when the cyclist passes the starting and finishing lines. This can introduce an error into the measurements. An automatic timing system might be better

space programmes, heights above the Earth are often given in feet, while the spacecraft's speed is given in knots (nautical miles per hour). These awkward units did not prevent them from reaching the Moon!

Study tip

The units m/s (metres per second) should remind you that you divide a distance (in metres, m) by a time (in seconds, s) to find speed.

Quantity	SI unit	Other	units
Distance	metre, m	kilometre, km	miles
Time	second, s	hour, h	hour, h
Speed	metres per second, m/s	kilometres per hour, km/h	miles per hour, mph

Table 2.1 Quantities, symbols and units in measurements of speed.

Worked example 2.1

A cyclist completed a 1500 m stage of a race in 37.5 s. What was her average speed?

Step 1: Start by writing down what you know, and what you want to know.

$$distance = 1500 \,\mathrm{m}$$

$$time = 37.5 s$$

Step 2: Now write down the equation.

$$speed = \frac{distance}{time}$$

Step 3: Substitute the values of the quantities on the right-hand side.

speed =
$$\frac{1500 \,\text{m}}{37.5 \,\text{s}}$$

Step 4: Calculate the answer.

speed =
$$40 \, \text{m/s}$$

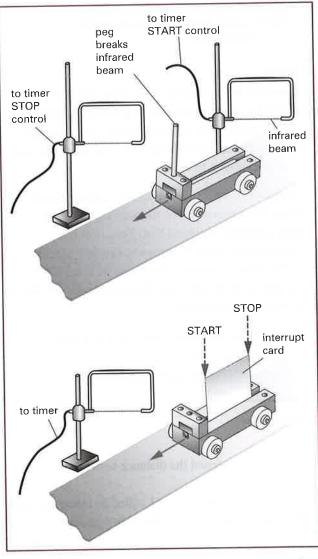
So the cyclist's average speed was 40 m/s.

Questions

- 2.1 If you measured the distance travelled by a snail in inches and the time it took in minutes, what would be the units of its speed?
- **2.2** Which of the following could not be a unit of speed?

km/h, s/m, mph, m/s, ms

2.3 Information about three cars travelling on a motorway is shown in the table.


Vehicle	Distance travelled / km	Time taken / minutes
car A	80	50
car B	72	50
car C	85	50

- a Which car is moving fastest?
- **b** Which car is moving slowest?

Measuring speed in the lab

There are many experiments you can do in the lab if you can measure the speed of a moving trolley or toy car. Figure 2.3 shows how to do this using one or two **light gates** connected to an electronic timer (or to a computer). The light gate has a beam of (invisible) infrared radiation.

On the left, the peg attached to the trolley breaks the beam of one light gate to start the timer. It breaks the second beam to stop the timer. The timer then shows

Figure 2.3 Using light gates to measure the speed of a moving trolley in the laboratory.

Activity 2.1 Measuring speed

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.2 Plan experiments and investigations

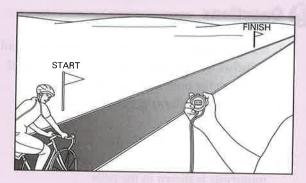
AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

AO3.5 Evaluate methods and suggest possible improvements

Safety

Take care when running or cycling. The aim is to move at a steady speed, not to go as fast as possible. Do not stand close to where people are running or cycling. Do not leave the school grounds unless you have permission to do so.


In athletics contests, runners are usually timed from the moment when the race starts to when they cross the finishing line. Your task is to measure the speed of someone moving quickly in the school grounds. They may be running or cycling. You should try to develop a method that is as accurate as possible.

- 1 Decide on two points between which they must run or cycle.
- 2 Decide how to measure this distance.

- 3 Decide how you will measure the time they take. Some points to consider:
 - Should the runner/cyclist travel a short distance or a long distance?
 - How precisely can you measure the distance they move?
 - How precisely can you measure the time taken?
 - How will you record your measurements and calculate the results?
- 4 When you have made your measurements, calculate their average speed:

average speed =
$$\frac{\text{total distance}}{\text{total time}}$$

- 5 Work with a partner, who makes the same measurements as you. Compare your results and try to explain any differences. This may help you to refine your technique.
- 6 Now compare your method with the methods developed by other members of the class. How can you decide whose is best?

the time taken to travel the distance between the two light gates.

On the right, a piece of card, called an **interrupt card**, is mounted on the trolley. As the trolley passes through the gate, the leading edge of the interrupt card breaks the

beam to start the timer. When the trailing edge passes the gate, the beam is no longer broken and the timer stops. The faster the trolley is moving, the shorter the time for which the beam is broken. Given the length of the interrupt card, the trolley's speed can be calculated.

Activity 2.2 Measuring speed in the lab

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

Use lab equipment to measure the speed of a moving trolley or toy car.

Start by checking whether you will be able to use one or two light gates to determine the speed of the trolley. Then try the following.

1 Place a book under one end of a long plank to form a long, gently sloping ramp.

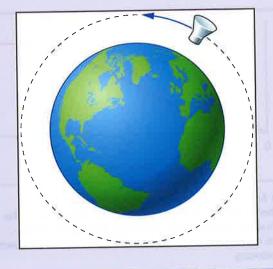
2 Place the trolley at the top end of the ramp, and release it so that it runs down the slope. (Make sure that someone or something is positioned to catch the trolley at the lower end.)

3 Measure the speed of the trolley close to the foot of the slope.

4 Increase the slope of the ramp by adding more books. How does the speed of the trolley depend on the height of the top end of the ramp?

Rearranging the equation

The equation


$$speed = \frac{distance}{time}$$

allows us to calculate speed from measurements of distance and time. We can rearrange the equation to allow us to calculate distance or time.

For example, a railway signalman might know how fast a train is moving, and need to be able to predict

Worked example 2.2

A spacecraft is orbiting the Earth at a steady speed of 8.0 km/s (see the diagram). How long will it take to complete a single orbit, a distance of 44000 km?

Step 1: Start by writing down what you know, and what you want to know.

speed =
$$8.0 \,\mathrm{km/s}$$

distance = $40000 \,\mathrm{km}$

Step 2: Choose the appropriate equation, with the unknown quantity 'time' as the subject (on the left-hand side).

$$time = \frac{distance}{speed}$$

Step 3: Substitute values – it can help to include units.

$$time = \frac{40000 \,\mathrm{km}}{8.0 \,\mathrm{km/s}}$$

Step 4: Perform the calculation.

$$time = 5500 s$$

This is about 92 minutes. So the spacecraft takes 92 minutes to orbit the Earth once.

S where it will have reached after a certain length of time:

 $distance = speed \times time$

Similarly, the crew of an aircraft might want to know how long it will take for their aircraft to travel between two points on its flight path:

 $time = \frac{distance}{speed}$

Worked example 2.2 illustrates the importance of keeping an eye on units. Because speed is in km/s and distance is in km, we do not need to convert to m/s and m. We would get the same answer if we did the conversion:

time =
$$\frac{400000000 \,\mathrm{m}}{8000 \,\mathrm{m/s}}$$
$$= 5000 \,\mathrm{s}$$

Study tip

It is better to remember one version of an equation and how to rearrange it than to try to remember three different versions.

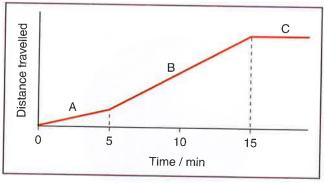
Questions

- **2.4** An aircraft travels 1000 m in 4.0 s. What is its speed?
- **2.5** A car travels 150 km in 2.0 hours. What is its speed? (Show the correct units.)
- **2.6** An interplanetary spacecraft is moving at 20 000 m/s. How far will it travel in one day? (Give your answer in km.)
- **2.7** How long will it take a coach travelling at 90 km/h to travel 300 km along a highway?

2.2 Distance-time graphs

You can describe how something moves in words: 'The coach pulled away from the bus stop. It travelled at a steady speed along the main road, heading out of town.

After five minutes, it reached the highway, where it was able to speed up. After ten minutes, it was forced to stop because of congestion.'


We can show the same information in the form of a distance—time graph, as shown in Figure 2.4. This graph is in three sections, corresponding to the three sections of the coach's journey:

- A The graph slopes up gently, showing that the coach was travelling at a slow speed.
- **B** The graph becomes steeper. The distance of the coach from its starting point is increasing more rapidly. It is moving faster.
- C The graph is flat (horizontal). The distance of the coach from its starting point is not changing. It is stationary.

The slope of the distance–time graph tells us how fast the coach was moving. The steeper the graph, the faster it was moving (the greater its speed). When the graph becomes horizontal, its slope is zero. This tells us that the coach's speed was zero in section C. It was not moving.

Question

2.8 Sketch a distance-time graph to show this: 'The car travelled along the road at a steady speed. It stopped suddenly for a few seconds. Then it continued its journey, at a slower speed than before.'

Figure 2.4 A graph to represent the motion of a coach, as described in the text. The slope of the graph tells us about the coach's speed. The steepest section (B) corresponds to the greatest speed. The horizontal section (C) shows that the coach was stationary.

Activity 2.3 Story graphs

Sketch a distance-time graph. Then ask your partner to write a description of it on a separate sheet of paper.

Choose four graphs and their descriptions. Display them separately and challenge the class to match them up.

Express trains, slow buses

An express train is capable of reaching high speeds, perhaps more than 300 km/h. However, when it sets off on its journey, it may take several minutes to reach this top speed. Then it takes a long time to slow down when it approaches its destination. The famous French TGV trains (Figure 2.5) run on lines that are reserved solely for their operation, so that their high-speed journeys are not disrupted by slower, local trains. It takes time to accelerate (speed up) and decelerate (slow down).

A bus journey is full of accelerations and decelerations (Figure 2.6). The bus accelerates away from the stop. Ideally, the driver hopes to travel at a steady speed until the next stop. A steady speed means that you can sit comfortably in your seat. Then there is a rapid deceleration as the bus slows to a halt. A lot of accelerating and decelerating means that you are likely to be thrown

Figure 2.5 France's high-speed trains, the TGVs (*Trains à Grande Vitesse*), run on dedicated tracks. Their speed has made it possible to travel 600km from Marseille in the south to Paris in the north, attend a meeting, and return home again within a single day.

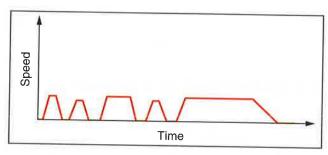
Figure 2.6 It can be uncomfortable on a packed bus as it accelerates and decelerates along its journey.

about as the bus changes speed. The gentle acceleration of an express train will barely disturb the drink in your cup. The bus's rapid accelerations and decelerations would make it impossible to avoid spilling the drink.

2.3 Understanding acceleration

Some cars, particularly high-performance ones, are advertised according to how rapidly they can accelerate. An advert may claim that a car goes 'from 0 to 60 miles per hour (mph) in 6s'. This means that, if the car accelerates at a steady rate, it reaches 10 mph after 1s, 20 mph after 2s, and so on. We could say that it speeds up by 10 mph every second. In other words, its acceleration is 10 mph per second.

So, we say that an object accelerates if its speed increases. Its **acceleration** tells us the rate at which its speed is changing – in other words, the change in speed per unit time.

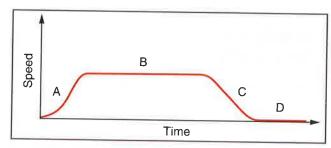

If an object slows down, its speed is also changing. We say that it is *decelerating*. Instead of an acceleration, it has a *deceleration*.

Speed-time graphs

Just as we can represent the motion of a moving object by a distance–time graph, we can also represent it by a speed–time graph. (It is easy to get these two types of graph mixed up. Always check out any graph by looking at the axes to see what their labels say.) A speed–time graph shows how the object's speed changes as it moves. Figure 2.7 shows a speed-time graph for a bus as it follows its route through a busy town. The graph frequently drops to zero because the bus must keep stopping to let people on and off. Then the line slopes up, as the bus accelerates away from the stop. Towards the end of its journey, it manages to move at a steady speed (horizontal graph), as it does not have to stop. Finally, the graph slopes downwards to zero again as the bus pulls into the terminus and stops.

The slope of the speed-time graph tells us about the bus's acceleration:

- The steeper the slope, the greater the acceleration.
- A negative slope means a deceleration (slowing down).
- ◆ A horizontal graph (slope = 0) means a constant speed.


Figure 2.7 A speed–time graph for a bus on a busy route. At first, it has to halt frequently at bus stops. Towards the end of its journey, it maintains a steady speed.

Graphs of different shapes

Speed-time graphs can show us a lot about an object's movement. Was it moving at a steady speed, or speeding up, or slowing down? Was it moving at all? The graph shown in Figure 2.8 represents a train journey.

If you study the graph, you will see that it is in four sections. Each section illustrates a different point.

- A Sloping upwards: speed increasing the train was accelerating.
- **B** Horizontal: speed constant the train was travelling at a steady speed.
- C Sloping downwards: speed decreasing the train was decelerating.
- D Horizontal: speed has decreased to zero the train was stationary.

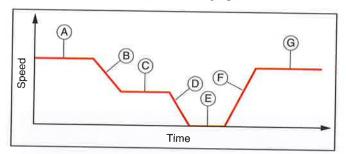


Figure 2.8 An example of a speed–time graph for a train during part of its journey. This illustrates how such a graph can show acceleration (section A), constant speed (section B), deceleration (section C) and zero speed (section D).

The fact that the graph lines are curved in sections A and C tells us that the train's acceleration was changing. If its speed had changed at a steady rate, these lines would have been straight.

Questions

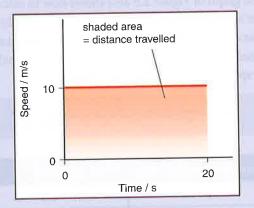
- **2.9** A car travels at a steady speed. When the driver sees the red traffic lights ahead, she slows down and comes to a halt. Sketch a speed-time graph for her journey.
- **2.10** Look at the speed–time graph.

Name the sections that represent:

- a steady speed
- **b** speeding up (accelerating)
- **c** being stationary
- **d** slowing down (decelerating).

Finding distance moved

A speed-time graph represents an object's movement. It tells us about how its speed changes. We can use the


graph to deduce how far the object moves. To do this, we have to make use of the equation

distance = area under speed-time graph

To understand this equation, consider these two worked examples.

Worked example 2.3

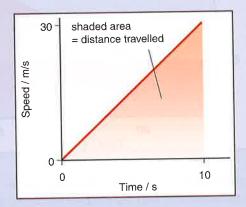
You cycle for 20 s at a constant speed of 10 m/s (see the graph). Calculate the distance you travel if you cycle for 20 s at a constant speed of 20 m/s.

The distance you travel is:

distance moved = $10 \,\text{m/s} \times 20 \,\text{s} = 200 \,\text{m}$

This is the same as the shaded area under the graph. This rectangle is 20 s long and 10 m/s high, so its area is $10 \text{ m/s} \times 20 \text{ s} = 200 \text{ m}$.

Study tip


The area under any straight-line graph can be broken down into rectangles and triangles. Then you can calculate the area using:

area of rectangle = width \times height

area of a triangle = $\frac{1}{2} \times base \times height$

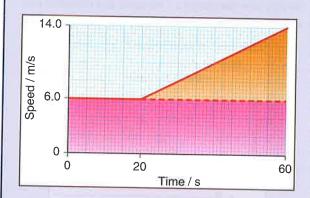
Worked example 2.4

You set off down a steep ski slope. Your initial speed is 0 m/s. After 10 s you are travelling at 30 m/s (see the graph). Calculate the distance you travel in this time.

This is a little more complicated. To calculate the distance moved, we can use the fact that your average speed is 15 m/s. The distance you travel is:

distance moved = 15m/s $\times 10$ s = 150 m

Again, this is represented by the shaded area under the graph. In this case, the shape is a triangle whose height is 30 m/s and whose base is 10 s. Since area of a triangle $= \frac{1}{2} \times \text{base} \times \text{height}$, we have:


area =
$$\frac{1}{2} \times 10 \text{ s} \times 30 \text{ m/s} = 150 \text{ m}$$

Question

- **2.11 a** Draw a speed-time graph to show the following motion. A car accelerates uniformly from rest for 5 s. Then it travels at a steady speed of 6 m/s for 5 s.
 - **b** On your graph, shade the area that shows the distance travelled by the car in 10 s.
 - **c** Calculate the distance travelled in this time.

Worked example 2.5

Calculate the distance travelled in 60 s by the train whose motion is represented in the graph below.

The graph has been shaded to show the area we need to calculate to find the distance moved by the train. This area is in two parts:

• a rectangle (pink) of height 6.0 m/s and width 60 s area = $6.0 \text{ m/s} \times 60 \text{ s} = 360 \text{ m}$

(this tells us how far the train would have travelled if it had maintained a constant speed of 6.0 m/s)

◆ a triangle (orange) of base 40 s and height (14.0 m/s - 6.0 m/s) = 8.0 m/s

area =
$$\frac{1}{2}$$
 × base × height
= $\frac{1}{2}$ × 40 s × 8.0 m/s
= 160 m

(this tells us the extra distance travelled by the train because it was accelerating).

We can add these two contributions to the area to find the total distance travelled:

total distance travelled =
$$360 \,\mathrm{m} + 160 \,\mathrm{m}$$

= $520 \,\mathrm{m}$

So, in 60 s, the train travelled 520 m.

We can check this result using an alternative approach. The train travelled for 20 s at a steady speed of 6.0 m/s, and then for 40 s at an average speed of 10.0 m/s. So:

distance travelled =
$$(6.0 \,\text{m/s} \times 20 \,\text{s}) + (10.0 \,\text{m/s} \times 40 \,\text{s})$$

= $120 \,\text{m} + 400 \,\text{m}$
= $520 \,\text{m}$

2.4 Calculating speed and acceleration

From a distance—time graph, we can find how fast something is moving. Here is an example that shows how this is done.

Table 2.2 shows information about a car journey between two cities. The car travelled more slowly at some times than at others. It is easier to see this if we present the information as a graph (see Figure 2.9).

From the graph, you can see that the car travelled slowly at the start of its journey, and also at the end, when it was travelling through the city. The graph is steeper in the middle section, when it was travelling on the open road between the cities.

The graph of Figure 2.9 also shows how to calculate the car's speed. Here, we are looking at the straight section of the graph, where the car's speed was constant. We need to find the value of the gradient (or slope) of the graph, which will tell us the speed:

speed = gradient of distance-time graph

Distance travelled/km	Time taken/h
0	0.0
10	0.4
20	0.8
100	1.8
110	2.3

Table 2.2 Distance and time data for a car journey. This data is represented by the graph in Figure **2.9**.

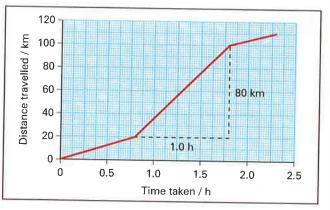


Figure 2.9 Distance—time graph for a car journey, for the data from Table 2.2.

- These are the steps you take to find the gradient:
 - Step 1: Identify a straight section of the graph.
 - Step 2: Draw horizontal and vertical lines to complete a right-angled triangle.
 - Step 3: Calculate the lengths of the sides of the triangle.
 - **Step 4:** Divide the vertical height by the horizontal width of the triangle ('up divided by along').

Here is the calculation for the triangle shown in Figure 2.9:

vertical height = 80 kmhorizontal width = 1.0 h

$$gradient = \frac{80 \, km}{1.0 \, h} = 80 \, km/h$$

So the car's speed was 80 km/h for this section of its journey. It helps to include units in this calculation. Then the answer will automatically have the correct units – in this case, km/h.

Question

2.12 The table shows information about a train journey.

Station	Distance travelled / km	Time taken / minutes
Ayton	0	0
Beeston	20	30
Seatown	28	45
Deeville	36	60
Eton	44	70

Use the data in the table to plot a distance—time graph for the train. Find the train's average speed between Beeston and Deeville. Give your answer in km/h.

Speed and velocity, vectors and scalars

In physics, the words *speed* and *velocity* have different meanings, although they are closely related: **velocity** is an object's speed in a particular stated direction.

So, we could say that an aircraft has a speed of 200 m/s but a velocity of 200 m/s due north. We must give the direction of the velocity or the information is incomplete.

Velocity is an example of a **vector quantity**. Vectors have both magnitude (size) and direction. Another example of a vector is **weight** – your weight is a force that acts downwards, towards the centre of the Earth.

Speed is an example of a **scalar quantity**. Scalars only have magnitude. Temperature is an example of another scalar quantity.

There is more about vectors and scalars in Chapter 3.

Calculating acceleration

Picture an express train setting off from a station on a long, straight track. It may take 300 s to reach a velocity of 300 km/h along the track. Its velocity has increased by 1 km/h each second, and so we say that its acceleration is 1 km/h per second.

These are not very convenient units, although they may help to make it clear what is happening when we talk about acceleration. To calculate an object's acceleration, we need to know two things:

- its change in velocity (how much it speeds up)
- the time taken (how long it takes to speed up).

 Then the acceleration of the object is defined as shown.

Key definition

acceleration – the rate of change of an object's velocity. $\frac{\text{change in velocity}}{\text{time taken}}$

We can write the equation for acceleration in symbols. We use a for acceleration and t for time taken. Because there are two velocities, we need two symbols. So we use u = initial velocity and v = final velocity. Now we can write the equation for acceleration like this:

$$a = \frac{v - \iota}{t}$$

In the example of the express train at the start of this subsection, we have initial velocity u = 0 km/h, final velocity v = 300 km/h and time taken t = 300 s. So acceleration $a = \frac{300 - 0}{300} = 1 \text{ km/h}$ per second. Worked example 2.6 uses the more standard velocity units of m/s.

Units of acceleration

In Worked example 2.6, the units of acceleration are given as m/s^2 (metres per second squared). These are the standard units of acceleration. The calculation shows that the aircraft's velocity increased by 2 m/s every second, or by 2 metres per second per second. It is simplest to write this as $2 m/s^2$, but you may prefer to think of it as 2 m/s per second, as this emphasises the meaning of acceleration.

Worked example 2.6

An aircraft accelerates from 100 m/s to 300 m/s in 100 s. What is its acceleration?

Step 1: Start by writing down what you know, and what you want to know.

initial velocity u = 100 m/sfinal velocity v = 300 m/stime t = 100 sacceleration a = ?

Step 2: Now calculate the change in velocity.

change in velocity = $300 \,\text{m/s} - 100 \,\text{m/s}$ = $200 \,\text{m/s}$

Step 3: Substitute into the equation.

acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$ $= \frac{200 \text{ m/s}}{100 \text{ s}}$ $= 2.0 \text{ m/s}^2$

Alternatively, you could substitute the values of u, v and t directly into the equation.

$$a = \frac{v - u}{t}$$
$$= \frac{300 - 100}{100} = 2.0 \,\text{m/s}^2$$

Other units for acceleration are possible. Earlier we saw examples of acceleration in mph per second and km/h per second, but these are unconventional. It is usually best to work in m/s².

Study tip

Acceleration is a vector quantity – it has a direction. It can be forwards (positive) or backwards (negative). So it is important always to think about velocity rather than speed when working out accelerations, because velocity is also a vector quantity.

Questions

2.13 Which of the following could **not** be a unit of acceleration?

km/s², mph/s, km/s, m/s²

2.14 A car sets off from traffic lights. It reaches a speed of 27 m/s in 18 s. What is its acceleration?

2.15 A train, initially moving at 12 m/s, speeds up to 36 m/s in 120 s. What is its acceleration?

Acceleration from speed-time graphs

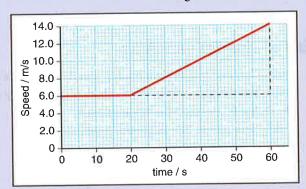
A speed–time graph with a steep slope shows that the speed is changing rapidly – the acceleration is greater. It follows that we can find the acceleration of an object by calculating the gradient of its speed–time graph:

acceleration = gradient of speed - time graph

Three points should be noted:

- The object must be travelling in a straight line; its velocity is changing but its direction is not.
- If the speed-time graph is curved (rather than a straight line), the acceleration is changing.
- If the graph is sloping down, the object is decelerating. The gradient of the graph is negative.
 So a deceleration is a negative acceleration.

Worked example 2.7


A train travels slowly as it climbs up a long hill. Then it speeds up as it travels down the other side. The table below shows how its speed changes. Draw a speed-time graph to show this data. Use the graph to calculate the train's acceleration during the second half of its journey.

Time / s	Speed / m/s
0	6.0
10	6.0
20	6.0
30	8.0
40	10.0
50	12.0
60	14.0

Before starting to draw the graph, it is worth looking at the data in the table. The values of speed are given at equal intervals of time (every $10\,s$). The speed is constant at first $(6.0\,\text{m/s})$. Then it increases in equal steps $(8.0,\,10.0,\,\text{and so on})$. In fact, we can see that the speed increases by $2.0\,\text{m/s}$ every $10\,s$. This is enough to tell us that the train's acceleration is $0.2\,\text{m/s}^2$. However, we will follow through the detailed calculation to illustrate how to work out acceleration from a graph.

- Step 1: The illustration shows the speed-time graph drawn using the data in the table.

 You can see that it falls into two parts.
 - the initial horizontal section shows that the train's speed was constant (zero acceleration)
 - the sloping section shows that the train was then accelerating.

Step 2: The triangle shows how to calculate the slope of the graph. This gives us the acceleration.

acceleration =
$$\frac{14.0 \text{ m/s} - 6.0 \text{ m/s}}{60 \text{ s} - 20 \text{ s}}$$

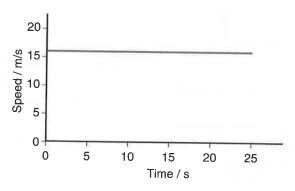
= $\frac{8.0 \text{ m/s}}{40 \text{ s}}$
= 0.20 m/s^2

So, as we expected, the train's acceleration down the hill is 0.20 m/s^2 .

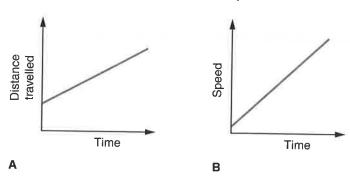
Question

- 2.16 A car travels for 10 s at a steady speed of 20 m/s along a straight road. The traffic lights ahead change to red, and the car slows down with a constant deceleration, so that it halts after a further 8 s.
- **a** Draw a speed-time graph to represent the car's motion during the 18 s described.
- **b** Use the graph to deduce the car's deceleration as it slows down.
- **c** Use the graph to deduce how far the car travels during the 18 s described.

Summary


You should know:

- about graphs of distance-time and speed-time
- the meaning of acceleration
- S ◆ about vector and scalar quantities, speed and velocity
- that acceleration is a vector quantity.


End-of-chapter questions

- 1 A bus is travelling along a road. It travels a distance of $400\,\mathrm{m}$ in a time of $25\,\mathrm{s}$.
 - a Write the equation used to calculate the average speed of the bus.
 - **b** What is the unit of average speed?

The graph shows that the bus's speed is constant.

- c Explain how you can tell that the bus has no acceleration.
- **d** Copy the graph and shade the area that represents the distance travelled by the bus. Label this area 'distance travelled'.
- 2 Here are two graphs that represent the motion of two different objects.

- a Copy the distance-time graph. Use your graph to explain how you would find the object's speed.
- **b** The object is moving with constant speed. Explain how you can tell this from the graph.
- c Copy the speed-time graph. Use your graph to explain how you would find the object's acceleration.

3 The table shows the difference between vector and scalar quantities.

Quantity	Description	Examples	
	has magnitude only		
	has magnitude and direction		

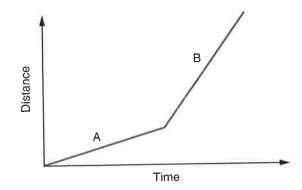
- a Copy the table and complete the first column with the words *vector* and *scalar* in the correct rows.
- **b** Write the words listed below in the correct spaces in the third column.

speed v

velocity

distance

acceleration


weight

4 A runner travels 400 m in 50 s. What is her average speed?

[3]

5 The graph represents the motion of a bus. It is in two sections, A and B. What can you say about the motion of the bus during these two sections?

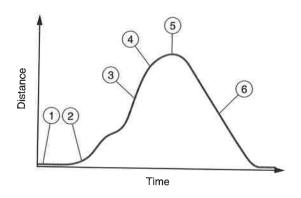
[2]

6 How far will a bus travel in 30 s at a speed of 15 m/s?

[3]

7 The table shows the distance travelled by a car at intervals during a short journey.

Distance/m	0	200	400	600	800
Time/s	0	10	20	30	40


a Draw a distance-time graph to represent this data.

[4]

b What does the shape of the graph tell you about the car's speed?

[2]

8 The graph shows the distance travelled by a car on a roller-coaster ride, at different times along its trip. It travels along the track, and then returns to its starting position. Study the graph and decide which point best fits the following descriptions. In each case, give a reason to explain why you have chosen that point.

[2]

[2]

[2]

[2]

[2]

[1]

[1]

[4]

[2]

[3]

[3]

[3]

[4]

- a The car is stationary.
- **b** The car is travelling its fastest.
- c The car is speeding up.
- **d** The car is slowing down.
- e The car starts on its return journey.
- 9 Scientists have measured the distance between the Earth and the Moon by reflecting a beam of laser light off the Moon. They measure the time taken for light to travel to the Moon and back.
 - a What other piece of information is needed to calculate the Earth-Moon distance?
 - **b** How would the distance be calculated?
- 10 Copy and complete the table showing information about the motion of a number of objects.

Object	Distance travelled	Time taken	Speed
bus	20 km	0.8 h	
taxi	6km		30 m/s
aircraft		5.5 h	900 km/h
snail	3 mm	10 s	

- 11 The speed–time graph for part of a train journey is a horizontal straight line. What does this tell you about the train's speed, and about its acceleration?
- 12 Sketch speed-time graphs to represent the following two situations.
 - a An object starts from rest and moves with constant acceleration.
 - **b** An object moves at a steady speed. Then it slows down and stops.
- 13 A runner accelerates from rest to 8.0 m/s in 2.0 s. What is his acceleration?
- 14 A runner accelerates from rest with an acceleration of 4.0 m/s² for 2.3 s. What will her speed be at the end of this time?

- 15 A car can accelerate at 5.6 m/s². Starting from rest, how long will it take to reach a speed of 24.0 m/s?
- [3]

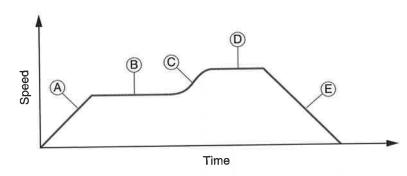
16 The table shows how the speed of a car changed during a section of a journey.

Speed/m/s	0	9.0	18	27	27	27
Time/s	0	10	20	30	40	50

a Draw a speed-time graph to represent this data.

[4]

Use your graph to calculate:


[3]

the car's acceleration during the first 30 s of the journey

the distance travelled by the car during the journey.

[5]

17 The graph shows how a car's speed changed as it travelled along.

In which section(s) was its acceleration zero?

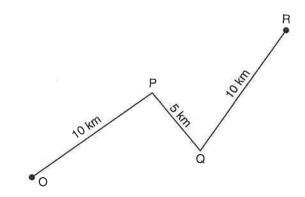
[2]

In which section(s) was its acceleration constant?

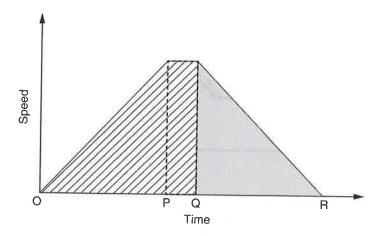
[2]

What can you say about its acceleration in the other section(s)?

[2]


18 A bus travels 1425 m in 75 s.

[3]


What is its speed? What other piece of information do we need in order to state its velocity?

[1]

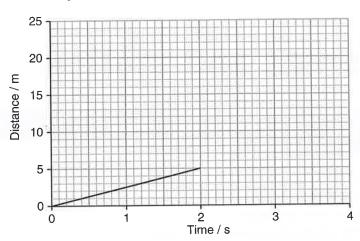
19 The diagram shows the route OPQR taken by a car.

The graph shows the speed–time graph for the car journey. The car starts from rest at O.

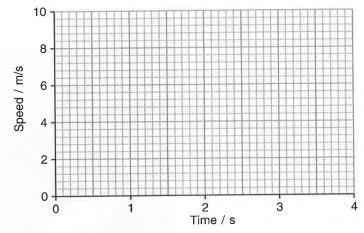
- **a** State the value of the distance represented by the shaded area.
- State what the car was doing during the interval:
 - i OP,
 - ii PQ,
 - iii QR.
- **c** Is the average speed during the journey the same as, less than or more than the maximum speed shown on the graph?

[Cambridge IGCSE® Physics 0625/23, Question 1, October/November, 2011]

[1]


[1]

[1]


[1]

[1]

20 The first graph is a distance / time graph showing the motion of an object.

- a i Describe the motion shown for the first 2 s, calculating any relevant quantity. [2]
 - ii After 2s the object accelerates. Copy the first graph on graph paper, and on it sketch a possible shape of the graph for the next 2s. [1]
- b Describe how a distance / time graph shows an object that is stationary. [1]
 The second graph shows the axes for a speed-time graph.

- c Copy the axes of the second graph on graph paper, and draw
 - i the graph of the motion for the first 2s as shown in the first graph
 - ii an extension of the graph for the next 2 s, showing the object accelerating at 2 m/s². [3]
- d Describe how a speed-time graph shows an object that is stationary.

[Cambridge IGCSE® Physics 0625/32, Question 1, May/June, 2012]

[2]

Forces and motion

In this chapter, you will find out:

- how to identify the forces acting on an object
- how a resultant force changes the motion of an object
- the difference between mass and weight
- S ◆ how a resultant force can give rise to motion in a circle
- the effect of air resistance on a moving object
- S how force, mass and acceleration are related
- S ◆ how a force changes an object's momentum
- S ◆ how to calculate the resultant of two or more vectors.

Roller-coaster forces

Some people get a lot of pleasure out of sudden acceleration and deceleration. Many fairground rides involve sudden changes in speed. On a roller-coaster (Figure 3.1), you may speed up as the car runs downhill. Then, suddenly, you veer off to the left – you are accelerated sideways. A sudden braking gives you a large, negative acceleration (a deceleration). You will probably have to be fastened in to your seat to avoid being thrown out of the car by these sudden changes in speed.

What are the forces at work in a roller-coaster? If you are falling downwards, it is gravity that affects you. This gives you an acceleration of about 10 m/s². We say that the G-force acting on you is 1 (that is, one unit of gravity). When the brakes slam on, the G-force may be greater, perhaps as high as 4. The brakes make use of the force of friction.

Changing direction also requires a force. So when you loop the loop or veer to the side, there must be a force acting. This is simply the force of the track,

Figure 3.1 A roller-coaster ride involves many rapid changes in speed. These accelerations and decelerations give the ride its thrill. The ride's designers have calculated the accelerations carefully to ensure that the car will not come off its track, and the riders will stay in the car.

whose curved shape pushes you round. Again, the G-force may reach as high as 4.

Roller-coaster designers have learned how to surprise you with sudden twists and turns. You can be scared or exhilarated. However you feel, you can release the tension by screaming.

3.1 We have lift-off

It takes an enormous force to lift the giant space shuttle off its launch pad, and to propel it into space (Figure 3.2). The booster rockets that supply the initial thrust provide a force of several million newtons. As the spacecraft accelerates upwards, the crew experience the sensation of being pressed firmly back into their seats. That is how they know that their craft is accelerating.

Forces change motion

One moment, the shuttle is sitting on the ground, stationary. The next moment, it is accelerating upwards, pushed by the force provided by the rockets.

In this chapter, we will look at how **forces** – pushes and pulls – affect objects as they move. You will be familiar with the idea that the unit used for measuring forces is the **newton** (N). To give an idea of the sizes of various forces, here are some examples:

- ◆ You lift an apple. The force needed to lift an apple is roughly one newton (1 N).
- ♦ You jump up in the air. Your leg muscles provide the force needed to do this, about 1000 N.
- You reach the motorway in your high-performance car, and 'put your foot down'. The car accelerates forwards. The engine provides a force of about 5000 N.

Figure 3.2 The space shuttle accelerating away from its launch pad. The force needed is provided by several rockets. Once each rocket has used all its fuel, it will be jettisoned, to reduce the mass that is being carried up into space.

◆ You are crossing the Atlantic in a Boeing 777 jumbo jet. The four engines together provide a thrust of about 500 000 N. In total, that is about half the thrust provided by each of the space shuttle's booster rockets.

Some important forces

Forces appear when two objects interact with each other. Figure 3.3 shows some important forces. Each force is represented by an arrow to show its direction.

Forces produce acceleration

The car driver in Figure 3.4a is waiting for the traffic lights to change. When they go green, he moves forwards. The force provided by the engine causes the car to accelerate. In a few seconds, the car is moving quickly along the road. The arrow in the diagram shows the force pushing the car forwards. If the driver wants to get away from the lights more

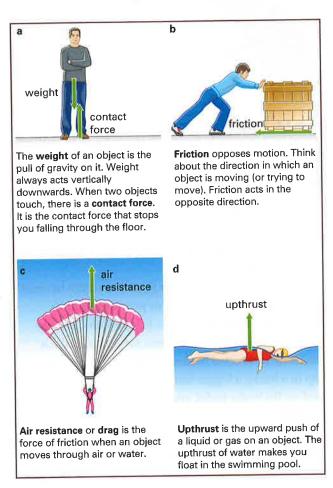
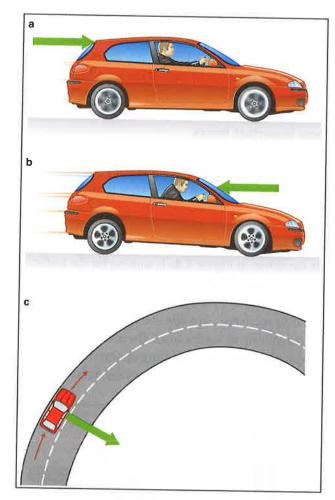



Figure 3.3 Some common forces.

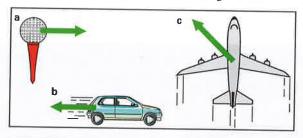
Figure 3.4 A force can be represented by an arrow. **a** The forward force provided by the engine causes the car to accelerate forwards. **b** The backward force provided by the brakes causes the car to decelerate. **c** A sideways force causes the car to change direction.

quickly, he can press harder on the accelerator. The forward force is then bigger, and the car's acceleration will be greater.

The driver reaches another junction, where he must stop. He applies the brakes. This provides another force to slow down the car (see Figure 3.4b). The car is moving forwards, but the force needed to make it decelerate is directed backwards. If the driver wants to stop in a hurry, a bigger force is needed. He must press hard on the brake pedal, and the car's deceleration will be greater.

Finally, the driver wants to turn a corner. He turns the steering wheel. This produces a sideways force on the car (Figure 3.4c), so that the car changes direction.

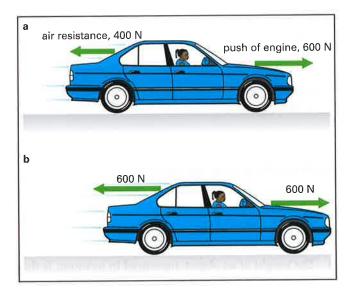
To summarise, we have seen several things about forces:


- ◆ They can be represented by arrows. A force has a direction, shown by the direction of the arrow.
- A force can make an object change speed (accelerate). A forward force makes it speed up, while a backward force makes it slow down.
- ◆ A force can change the direction in which an object is moving.

Study tip

Take care always to think about the forces that act on an object. These are the forces that will affect its motion, not the forces it exerts on other objects.

Question


3.1 The diagram shows three objects that are moving. A force acts on each object. For each, say how its movement will change.

Two or more forces

The car shown in Figure 3.5a is moving rapidly. The engine is providing a force to accelerate it forwards, but there is another force acting, which tends to slow down the car. This is air resistance, a form of friction caused when an object moves through the air. (This frictional force is also called drag, especially for motion through fluids other than the air.) The air drags on the object, producing a force that acts in the opposite direction to the object's motion. In Figure 3.5a, these two forces are:

- ◆ push of engine = 600 N to the right
- drag of air resistance = 400 N to the left.

Figure 3.5 A car moves through the air. Air resistance acts in the opposite direction to its motion.

We can work out the combined effect of these two forces by subtracting one from the other to give the **resultant force** acting on the car.

The resultant force is the single force that has the same effect as two or more forces.

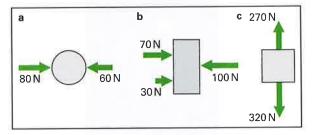
So in Figure 3.5a:

resultant force =
$$600 \text{ N} - 400 \text{ N}$$

= 200 N to the right

This resultant force will make the car accelerate to the right, but not as much as if there was no air resistance.

In Figure 3.5b, the car is moving even faster, and air resistance is greater. Now the two forces cancel each other out. So in Figure 3.5b:


resultant force =
$$600 \text{ N} - 600 \text{ N} = 0 \text{ N}$$

We say that the forces on the car are *balanced*. There is no resultant force and so the car no longer accelerates. It continues at a constant speed in a straight line.

- ◆ If no resultant force acts on an object, it will not accelerate; it will remain at rest or it will continue to move at a constant speed in a straight line.
- If an object is at rest or is moving at a constant speed in a straight line, we can say that there is no resultant force acting on it.

Question

3.2 The forces acting on three objects are shown in the diagram.

For each of a, b and c:

- i Say whether the forces are balanced or unbalanced.
- **ii** If the forces are unbalanced, calculate the resultant force on the object and give its direction.
- iii Say how the object's motion will change.

3.2 Mass, weight and gravity

If you drop an object, it falls to the ground. It is difficult to see how a falling object moves. However, a multi-flash photograph can show the pattern of movement when an object falls.

Figure 3.6 shows a ball falling. There are seven images of the ball, taken at equal intervals of time. The ball falls further in each successive time interval. This shows that its speed is increasing – it is accelerating.

If an object accelerates, there must be a force that is causing it to do so. In this case, the force of **gravity** is pulling the ball downwards. The name given to the force of gravity acting on an object is its **weight**. Because weight is a force, it is measured in newtons (N).

Every object on or near the Earth's surface has weight. This is caused by the attraction of the Earth's gravity. The Earth pulls with a force of 10 N (approximately) on each kilogram of matter, so an object of mass 1 kg has a weight of 10 N:

weight of
$$1 \text{ kg mass} = 10 \text{ N}$$

Because the Earth pulls with the same force on every kilogram of matter, every object falls with the

Figure 3.6 The increasing speed of a falling ball is captured in this multi-flash image.

same acceleration close to the Earth's surface. If you drop a 5 kg ball and a 1 kg ball at the same time, they will reach the ground at the same time.

The acceleration caused by the pull of the Earth's gravity is called the **acceleration of free fall** or the **acceleration due to gravity**. This quantity is given the symbol g and its value is 10 m/s^2 close to the surface of the Earth:

acceleration of free fall $g = 10 \text{ m/s}^2$

Calculating weight

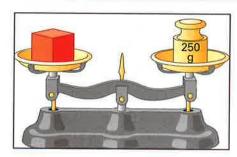
We have seen that an object of mass 1 kg has a weight of $10 \,\mathrm{N}$; an object of mass 2 kg has a weight of $20 \,\mathrm{N}$; and so on. To calculate an object's weight W from its mass m, we multiply by 10, the value of the acceleration of free

fall *g*. We can write this as an equation in words and in symbols:

weight = mass × acceleration of free fall W = mg

Distinguishing mass and weight

It is important to understand the difference between the two quantities, mass and weight.


- The mass of an object, measured in kilograms, tells you how much matter it is composed of.
- The weight of an object, measured in newtons, is the gravitational force that acts on it.

If you take an object to the Moon, it will weigh less than it does on Earth, because the Moon's gravity is weaker than the Earth's. However, its mass will be *unchanged*, because it is made of just as much matter as when it was on Earth.

When we weigh an object using a balance, we are comparing its weight with that of standard weights on the other side of the balance (Figure 3.7). We are making use of the fact that, if two objects weigh the same, their masses will be the same.

Study tip

We always talk about weighing an object. However, if the balance we use has a scale in kilograms or grams, we will find its mass, not its weight.

Figure 3.7 When the balance is balanced, we know that the weights on opposite sides are equal, and so the masses must also be equal.

Activity 3.1 Comparing masses

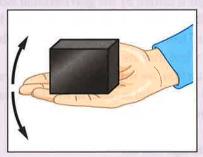
Skills

A03.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

A03.5 Evaluate methods and suggest possible improvements


You can compare the masses of two objects by holding them. How good are you at judging mass?

In science, we use instruments to make measurements. For example, we use a balance to measure the mass of an object. But some balances are more sensitive than others. For example, if you weigh yourself, the scales may give your mass to the nearest 100 g or 10 g. Digital kitchen scales may give the mass of flour to the nearest gram. A lab balance may measure to the nearest milligram or better.

In this activity, you will test your own sensitivity. How good are you at comparing the masses of two objects? There are two methods that you can use to compare the masses of two objects.

Method A: Pick up an object in one hand. Give yourself enough time to assess its mass. (Moving your hand up and down can help when assessing the mass of an object.) Then put it down and pick

up another object. Assess its mass. Which has the greater mass?

Method B: Pick up two objects, one in each hand. Assess their masses. Which is greater?

- 1 Try out the two methods described above. Compare masses that are similar. Which method is more sensitive?
- 2 Use your preferred method. What is the smallest difference in mass that you can detect? For example, if you compare a 100 g mass with a 120 g mass, can you tell the difference?

Questions

- **3.3** A book is weighed on Earth. It is found to have a mass of 1 kg. So its weight on the Earth is 10 N. What can you say about its mass and its weight if you take it:
 - **a** to the Moon, where gravity is weaker than on Earth?
 - **b** to Jupiter, where gravity is stronger?

- **3.4** An astronaut has a mass of 90 kg.
 - **a** Calculate her weight on the surface of the Earth.
 - **b** The astronaut travels to Mars, where gravity is weaker. The acceleration of free fall on the surface of Mars has a value $g = 3.7 \text{ m/s}^2$. Calculate her weight on Mars.

3.3 Falling and turning

Objects fall to the ground because they have weight. Their weight is caused by the **gravitational field** of the Earth, pulling downwards on their mass. The Moon's gravitational field is much weaker, which is why objects weigh less when they are on the Moon.

In this section, we will look at two situations where we have to take careful account of the directions of the forces acting on an object.

Falling through the air

The Earth's gravity is equally strong at all points close to the Earth's surface. If you climb to the top of a tall building, your weight will stay the same. We say that there is a *uniform gravitational field* close to the Earth's surface. This means that all objects fall with the same acceleration as the ball shown in Figure 3.6, provided there is no other force acting to reduce their acceleration. For many objects, the force of air resistance can affect their acceleration.

Parachutists make use of air resistance. A free-fall parachutist (Figure 3.8) jumps out of an aircraft and accelerates downwards. Figure 3.9 shows the forces on a parachutist at different points in his fall. At first, air resistance has little effect. However, air resistance increases as he falls, and eventually this force balances his weight. Then the parachutist stops accelerating – he falls at a steady rate known as the **terminal velocity**.

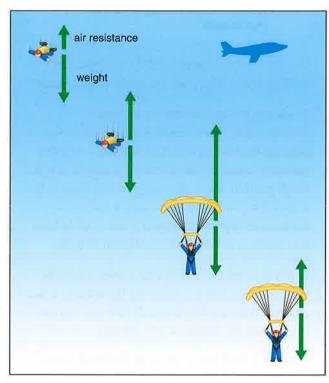

Opening the parachute greatly increases the area and hence the air resistance. Now there is a much bigger force upwards. The forces on the parachutist are again

Figure 3.8 Free-fall parachutists, before they open their parachutes. They can reach a terminal velocity of more than 50 m/s.

unbalanced, and he slows down. The idea is to reach a new, slower, terminal velocity of about 10 m/s, at which speed he can safely land. At this point, weight = drag, and so the forces on the parachutist are balanced.

The graph in Figure 3.10 shows how the parachutist's speed changes during a fall.

- When the graph is horizontal, speed is constant and forces are balanced.
- When the graph is sloping, speed is changing. The parachutist is accelerating or decelerating, and forces are unbalanced.

Figure 3.9 The forces on a falling parachutist. Notice that his weight is constant. When air resistance equals weight, the forces are balanced and the parachutist reaches a steady speed. The parachutist is always falling (velocity downwards), although his acceleration is upwards when he opens his parachute.

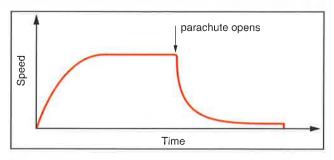


Figure 3.10 A speed–time graph for a falling parachutist.

- 3.5 Look at the speed-time graph of Figure 3.10.Find a point where the graph is sloping upwards.
 - a Is the parachutist accelerating or decelerating?
 - **b** Which of the two forces acting on the parachutist is greater?
 - **c** Explain the shape of the graph after the parachute has opened.

Going round in circles

When a car turns a corner, it changes direction. Any object moving along a circular path is changing direction as it goes. A force is needed to do this. Figure 3.11 shows three objects following curved paths, together with the forces that act to keep them on track.

- a The boy is whirling an apple around on the end of a piece of string. The tension in the string pulls on the apple, keeping it moving in a circle.
- **b** An aircraft 'banks' (tilts) to change direction. The lift force on its wings provides the necessary force.
- **c** The Moon is held in its orbit around the Earth by the pull of the Earth's gravity.

For an object following a circular path, the object is acted on by a force at right angles to its velocity.

Study tip

The force that keeps an object moving in a circle always acts towards the centre of the circle. If the force disappears, the object will move off at a tangent to the circle; it will not fly outwards, away from the centre.

3.4 Force, mass and acceleration

A car driver uses the accelerator pedal to control the car's acceleration. This alters the force provided by the engine. The bigger the force acting on the car, the bigger the acceleration it gives to the car. Doubling the force produces twice the acceleration, three times the force produces three times the acceleration, and so on.

There is another factor that affects the car's acceleration. Suppose the driver fills the boot with a lot of heavy boxes and then collects several children from college. He will notice the difference when he moves away from the traffic lights. The car will not accelerate so readily, because its mass has been increased. Similarly, when he applies the brakes, it will not decelerate as readily as before. The mass of the car affects how easily it can be accelerated or decelerated. Drivers learn to take account of this.

The greater the mass of an object, the smaller the acceleration it is given by a particular force.

So, big (more massive) objects are harder to accelerate than small (less massive) ones. If we double the mass of the object, its acceleration for a given force will be halved. We need to double the force to give it the same acceleration.

This tells us what we mean by *mass*. It is the property of an object that resists changes in its motion.

Force calculations

These relationships between force, mass and acceleration can be combined into a single, very useful, equation, as shown.

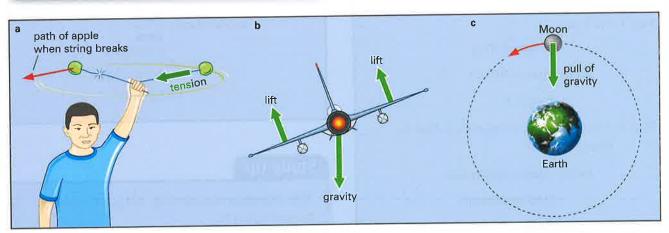


Figure 3.11 Examples of motion along a curved path. In each case, there is a sideways force holding the object in its circular path.

Key definition

force – the action of one body on a second body that causes its velocity to change.

 $force = mass \times acceleration$

F = ma

The quantities involved in this equation, and their units, are summarised in Table 3.1. The unit of force is the newton, which is defined as shown. Worked examples 3.1 and 3.2 show how to use the equation.

Key definition

newton (N) – the force required to give a mass of 1 kg an acceleration of 1 m/s^2 .

Quantity	Symbol	SI unit
force	F	newton, N
mass	m	kilogram, kg
acceleration	а	metres per second squared, m/s ²

Table 3.1 The three quantities related by the equation force = $mass \times acceleration$.

Worked example 3.1

When you strike a tennis ball that another player has hit towards you, you provide a large force to reverse its direction of travel and send it back towards your opponent. You give the ball a large acceleration. What force is needed to give a ball of mass 0.10 kg an acceleration of 500 m/s²?

Step 1: We have:

 $mass = 0.10 \, kg$

 $acceleration = 500 \, \text{m/s}^2$

force = ?

Step 2: Substituting in the equation to find the force gives:

 $force = mass \times acceleration$

 $= 0.10 \,\mathrm{kg} \times 500 \,\mathrm{m/s^2}$

 $=50 \, \text{N}$

Worked example 3.2

An Airbus A380 aircraft has four jet engines, each capable of providing 320 000 N of thrust. The mass of the aircraft is 560 000 kg when loaded. What is the greatest acceleration that the aircraft can achieve?

Step 1: The greatest force provided by all four engines working together is:

 $4 \times 320000 \,\mathrm{N} = 1280000 \,\mathrm{N}$

Step 2: Now we have:

force = $1280000 \,\mathrm{N}$

 $mass = 560000 \, kg$

acceleration = ?

Step 3: The greatest acceleration the engines can produce is then given by:

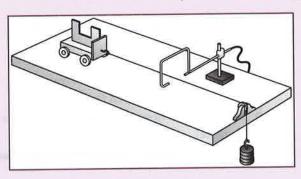
acceleration =
$$\frac{\text{force}}{\text{mass}}$$

= $\frac{1280000 \,\text{N}}{560000 \,\text{kg}}$
= $2.29 \,\text{m/s}^2$

Study tip

Note that mass must be in kg, not g, if the force is to work out in N.

- **3.6** What force is needed to give a car of mass $600 \,\mathrm{kg}$ an acceleration of $2.5 \,\mathrm{m/s^2}$?
- **3.7** A stone of mass $0.20 \, \text{kg}$ falls with an acceleration of $10.0 \, \text{m/s}^2$. How big is the force that causes this acceleration?
- **3.8** What acceleration is produced by a force of 2000 N acting on a person of mass 80 kg?
- 3.9 One way to find the mass of an object is to measure its acceleration when a force acts on it. If a force of 80 N causes a box to accelerate at 0.10 m/s², what is the mass of the box?


Activity 3.2 F, m and a

Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- A03.2 Plan experiments and investigations
- AO3.3 Make and record observations, measurements and estimates
- AO3.4 Interpret and evaluate experimental observations and data

If you change the force acting on an object, its acceleration changes. If you change the mass of the object, its acceleration changes.

The picture shows one way to investigate this using a laboratory trolley, a light gate and a timer. The trolley is placed on a runway. A string passes over a pulley. Weights on the end of the string provide the force needed to make the trolley accelerate.

Two important points to note:

◆ The force F pulling the trolley is the weight of the masses m hanging from the

- end of the string. Calculate the force using F = mg.
- ◆ The mass m that is accelerating is the mass of the trolley plus the mass on the end of the string.

Investigate how the trolley's acceleration a depends on the force F acting on it and on the mass m.

- 1 Set up the trolley on a runway, as shown.

 Decide how you will measure its acceleration.

 You can use a light gate and an interrupt card, or two light gates, or a motion sensor, and a data-logger and a computer.

 Alternatively, you could use a ticker-timer and ticker-tape.
- 2 Hang weights on the end of the string and release the trolley. Be ready to catch it when it reaches the end of the runway. Check that you can measure its acceleration.
- 3 To find out how the acceleration depends on the mass of the trolley, you must keep the force constant. Do not change the load on the end of the string. Increase the mass of the trolley by placing masses on top of it.
- 4 To find out how the acceleration depends on the force, you must change the number of masses on the end of the string. To keep the total mass constant, start with one mass on the string and nine masses on the trolley. Then, one by one, transfer masses from the trolley to the end of the string.

3.5 The idea of momentum

A force will change an object's motion. It will make the object accelerate; it may make it change direction. The effect of a force *F* depends on two things:

- how big the force is
- lacktriangle the time t it acts for.

The bigger the force and the longer it acts for, the more the object's motion will change. The *impulse equation* sums this up:

$$Ft = mv - mu$$

The quantity on the left, Ft, is called the **impulse** of the force. On the right we have mv (mass × final velocity) and mu (mass × initial velocity). The quantity mass × velocity is known as the **momentum** (ρ) of the object, so the right-hand side of the equation mv-mu is the *change* in the object's momentum. So we can write the impulse equation like this:

impulse of force = change of momentum

Impulse and momentum are both defined by equations:

impulse = force × time for which it acts = Ft momentum ρ = mass × velocity = mv

The impulse equation is related to the equation F = ma. We know that acceleration $a = \frac{v - u}{t}$, so we can substitute for a to give:

$$F = \frac{m(v - u)}{t}$$

or

$$Ft = m(v - u)$$

which is the impulse equation.

Worked example 3.3

a A car of mass 600 kg is moving at 15 m/s. Calculate its momentum.

$$momentum = mass \times velocity$$
$$= 600 \text{ kg} \times 15 \text{ m/s}$$

$$=900 \,\mathrm{kg}\,\mathrm{m/s}$$

b The driver accelerates gently so that a force of 30 N acts on the car for 10 s. Calculate the impulse of the force.

impulse = force
$$\times$$
 time = 30 N \times 10 s = 300 N s

c Calculate the momentum of the car after the accelerating force has acted on it.

The impulse of the force tells us how much the car's momentum changes. The car is speeding up, so its momentum increases by $300\,\mathrm{N}\,\mathrm{s}$.

$$=900+300$$

$$= 1200 \,\mathrm{kg}\,\mathrm{m/s}$$

(Note that the unit of momentum is kg m/s; this is the same as N s, the unit of impulse.)

Questions

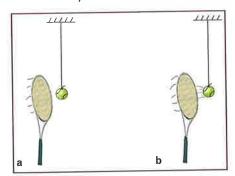
- **3.10** Calculate the momentum of a car of mass 600 kg moving at 25 m/s.
- **3.11** A force of 20 N acts on a rocket for 350 s, causing the rocket's velocity to increase.
 - **a** Calculate the impulse of the force.
 - **b** By how much does the rocket's momentum increase?

Momentum in a collision

Figure 3.12 shows a game in which a ball hangs from a length of string. The player hits the ball horizontally with a racket.

How can we use the idea of momentum to describe what happens? We need to think about momentum before the racket collides with the ball, and then after the collision.

- **a** Before the collision: The racket is moving to the right; it has momentum. The ball is stationary, so it has no momentum.
- **b** After the collision: The racket is moving to the right, but more slowly than before. It has lost momentum. The ball is moving rapidly to the right. It has gained momentum.


So you can see that, when the racket exerts a force on the ball, momentum is transferred from the racket to the ball. Whenever a force acts on an object, its momentum changes. At the same time, the momentum of the object causing the force also changes. If one object gains momentum, then the other loses an equal amount of momentum. This is known as the **principle** of the conservation of momentum.

We can state the principle in a different way.

Whenever two objects interact, the total amount of momentum before they interact is the same as the total amount of momentum afterwards:

total momentum before = total momentum after

The next worked example shows how we can use this to work out how fast the ball in Figure 3.12 will be moving after it has been hit by the racket.

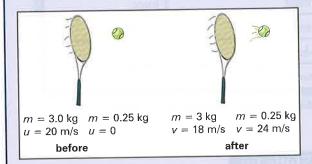


Figure 3.12 Hitting a ball with a racket: **a** before the hit; **b** after the hit.

Worked example 3.4

The illustration below shows the masses and velocities of the racket and ball shown in Figure 3.12. Find:

- a the momentum of the racket before and after the collision
- b the momentum of the ball after the collision
- c the velocity of the ball.

a We can calculate the momentum of the racket using momentum = mass × velocity. Before the collision:

$$momentum = 3.0 \text{ kg} \times 20 \text{ m/s} = 60 \text{ kg m/s}$$

After the collision, the racket is moving more slowly and so its momentum is less:

$$momentum = 3.0 \text{ kg} \times 18 \text{ m/s} = 54 \text{ kg m/s}$$

b The momentum gained by the ball is equal to the momentum lost by the racket. So:

momentum of ball =
$$60-54 = 6.0 \text{ kg m/s}$$

c We can calculate the velocity of the ball by rearranging the equation for momentum:

velocity =
$$\frac{\text{momentum}}{\text{mass}}$$
$$= \frac{6.0 \text{ kg m/s}}{0.25 \text{ kg}}$$
$$= 24 \text{ m/s}$$

The ball will move off with a velocity of 24 m/s to the right.

3.6 More about scalars and vectors

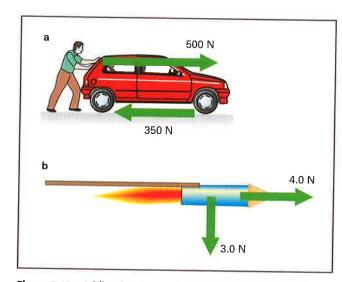
We can represent forces using arrows because a force has a *direction* as well as a *magnitude*. This means that force is a *vector quantity* (see Chapter 2). Table 3.2 lists some scalar and vector quantities.

Scalar quantities	Vector quantities
speed	velocity
mass	force
energy	weight
density	acceleration
temperature	

Table 3.2 Some scalar and vector quantities.

Study tip

Every vector quantity has a direction. However, it is not always necessary to state the direction if this is obvious – for example, we might say 'The weight of the block is 10 N,' without saying that this force acts downwards.


Adding forces

What happens if an object is acted on by two or more forces? Figure 3.13a shows someone pushing a car. Friction opposes their pushing force. Because the forces are acting in a straight line, it is simple to calculate the resultant force, provided we take into account the directions of the forces:

resultant force =
$$500 \text{ N} - 350 \text{ N}$$

= 150 N to the right

Note that we must give the direction of the resultant force, as well as its magnitude. The car will accelerate towards the right.

Figure 3.13b shows a more difficult situation. A firework rocket is acted on by two forces.

Figure 3.13 Adding forces: **a** two forces in a straight line; **b** two forces in different directions.

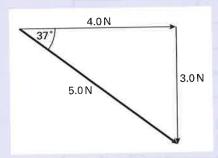
- The thrust of its burning fuel pushes it towards the right.
- ◆ Its weight acts vertically downwards.

 Worked example 3.5 shows how to find the resultant force by the method of drawing a **vector triangle** (graphical representation of vectors).

Rules for vector addition

You can add two or more forces by the following method – simply keep adding arrows end-to-end:

- Draw arrows end-to-end, so that the end of one is the start of the next.
- Choose a scale that gives a large triangle.
- Join the start of the first arrow to the end of the last arrow to find the resultant.


Other vector quantities (for example, two velocities) can be added in this way. Imagine that you set out to swim across a fast-flowing river. You swim towards the opposite bank, but the river's velocity carries you downstream. Your resultant velocity will be at an angle to the bank.

Airline pilots must understand vector addition. Aircraft fly at high speed, but the air they are moving through is also moving fast. If they are to fly in a straight line towards their destination, the pilot must take account of the wind speed.

Worked example 3.5

Find the resultant force acting on the rocket shown in Figure 3.13b. What effect will the resultant force have on the rocket?

- Step 1: Look at the diagram. The two forces are 4.0 N horizontally and 3.0 N vertically.
- Step 2: Draw a scale diagram to represent these forces, as follows. In the diagram we are using a scale of 1.0 cm to represent 1.0 N.
- Draw a horizontal arrow, 4.0 cm long, to represent the 4.0 N force. Mark it with an arrow to show its direction.

- ◆ Using the end of this arrow as the start of the next arrow, draw a vertical arrow, 3.0 cm long, to represent the 3.0 N force.
- Step 3: Complete the triangle by drawing an arrow from the start of the first arrow to the end of the second arrow. This arrow represents the resultant force.
- Step 4: Measure the arrow, and use the scale to determine the size of the force it represents.

 (You could also calculate this using Pythagoras' theorem.)
- ♦ length of line = 5.0 cm
- ◆ resultant force = 5.0 N
 - Step 5: Use a protractor to measure the angle of the force. (You could also calculate this angle using trigonometry.)
 - angle of force = 37° below horizontal

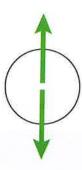
So the resultant force acting on the rocket is $5.0\,\mathrm{N}$ acting at 37° below the horizontal. The rocket will be given an acceleration in this direction.

Question

- $3.12~\mathrm{An}$ aircraft can fly at a top speed of $600~\mathrm{km/h}$.
 - **a** What will its speed be if it flies into a headwind of 100 km/h? (A head-wind blows in the opposite direction to the aircraft.)
- **b** The pilot directs the aircraft to fly due north at 600 km/h. A side-wind blows at 100 km/h towards the east. What will be the aircraft's resultant velocity? (Give both its speed and its direction.)

Summary

You should know:


- how forces affect motion
- about resultant forces
- that weight is the force of gravity on an object
- the relationship between force, mass and acceleration
- S
 about motion along a circular path
- about the motion of an object falling through air
- expressions for momentum and the impulse of a force
- that force and momentum are vector quantities.

End-of-chapter questions

- 1 Read the following sentence:
 - A force can make an object change direction, slow down, or speed up.
 - Copy the sentence, changing the words in *italics* to the correct scientific terms.
- 2 An object may be acted on by several forces. What name is given to the single force that has the same effect as these forces?
- 3 What name is given to the force on an object caused by the Earth's gravitational pull?
- A force causes an object with mass to accelerate.
 - a Write the equation that links the quantities force, mass and acceleration.
 - **b** Copy the table and complete the second column, to show the three quantities and their units.

Quantity	Unit	Scalar or vector?	
mass			
acceleration			
force			

- c In the third column, state whether each quantity is a scalar or a vector.
- 5 A car is travelling around a circular track at a steady speed. A force causes it to follow the track. What is the angle between this force and the car's velocity? Draw a diagram to illustrate your answer.
- 6 The diagram shows the forces acting on a table tennis ball as it falls.

- **a** Copy the diagram and label the force arrows weight and air resistance.
- **b** The two forces are equal but opposite. What is the resultant force acting on the ball?
- c Explain why the ball falls at a steady speed.
- d What name is given to this steady speed?

7 When a force acts on an object, the object's momentum changes, according to the symbol equation:

 $F \times t = m \times v - m \times u$

- a Copy and complete this word equation:impulse of force =
- **b** Explain what each of the five symbols in the symbol equation represents.
- c Is momentum a scalar or a vector quantity?
- 8 What are the units of a mass, b force and c acceleration?

[3]

9 a Why is it sensible on diagrams to represent a force by an arrow?

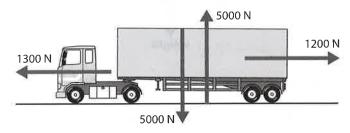
[1]

b Why should mass not be represented by an arrow?

- [1]
- 10 Which will produce a bigger acceleration: a force of 10.0 N acting on a mass of 5.0 kg, or a force of 5.0 N acting on a mass of 10.0 kg?
- [2]

- 11 An astronaut is weighed before he sets off to the Moon. He has a mass of 80 kg.
 - a What will his weight be on Earth?

[3]


b When he arrives on the Moon, will his mass be more, less, or the same?

[1]

c Will his weight be more, less, or the same?

[1]

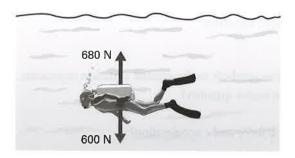
12 The diagram shows the forces acting on a lorry as it travels along a flat road.

- a Two of the forces have effects that cancel each other out. Which two? Explain your answer. [2]
- **b** What is the resultant force acting on the lorry? Give its magnitude and direction.

- [3]
- c What effect will this resultant force have on the speed at which the lorry is travelling?
- [1]

13 What force is needed to give a mass of 20 kg an acceleration of 5.0 m/s²?

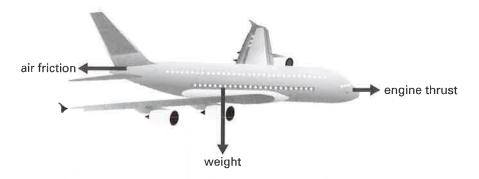
[3]


14 A train of mass 800 000 kg is slowing down. What acceleration is produced if the braking force is 1 400 000 N?

[3]

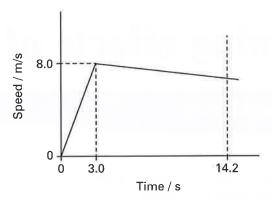
15 A car speeds up from 12 m/s to 20 m/s in 6.4 s. If its mass is 1200 kg, what force must its engine provide?

- [6]
- 16 The gravitational field of the Moon is weaker than that of the Earth. It pulls on each kilogram of mass with a force of 1.6 N. What will be the weight of a 50 kg mass on the Moon?
- [3]


17 The diagram shows a diver underwater,

Calculate the resultant force on the diver.

[3] [1]


- **b** Explain how his motion will change.
- An aeroplane is flying horizontally at a steady speed in a straight line. The diagram shows three of the four forces acting on it.

- In order to fly horizontally at a steady speed, which two of the forces shown on the aeroplane must be equal?
- [1]
- In order to fly horizontally in a straight line, there must be a fourth force acting on the plane. Copy the diagram and draw an arrow to represent this force.
- [1]
- The aeroplane flies an outward journey from Budapest (Hungary) to Palermo (Italy) in 2.75 hours. The distance is 2200 km.
 - Calculate, in km/h, the average speed of the aeroplane.

- [3]
- On the return journey from Palermo to Budapest, the journey time is shorter, even though the engine thrust is the same. Suggest what might have caused the return journey to be shorter. [Cambridge IGCSE® Physics 0625/22, Question 3, October/November, 2010]
 - [1]

19 A young athlete has a mass of 42 kg. On a day when there is no wind, she runs a 100 m race in 14.2 s. A sketch graph (not to scale) showing her speed during the race is.

- a Calculate:
 - the acceleration of the athlete during the first 3.0 s of the race [2]
 - ii the accelerating force on the athlete during the first 3.0 s of the race [2]
 - iii the speed with which she crosses the finishing line. [3]
- b Suggest two differences that might be seen in the graph if there had been a strong wind opposing the runners in the race. [2]

[Cambridge IGCSE® Physics 0625/33, Question 1, October/November, 2010]

4

Turning effects of forces

In this chapter, you will find out:

- how to describe the turning effect of a force
- the conditions needed for an object to be in equilibrium
- how to calculate moments, forces and distances
- how the centre of mass of an object affects its stability.

Keeping upright

Human beings are inherently unstable. We are tall and thin and walk upright. Our feet are not rooted into the ground. So you might expect us to keep toppling over. Human children learn to stand and walk at the age of about 12 months. It takes a lot of practice to get it right. We have to learn to coordinate our muscles so that our legs, body and arms move correctly. There is a special organ in each of our ears (the semicircular canals) that keeps us aware of whether we are vertical or tilting. Months of practice and many falls are needed to develop the skill of walking.

We have the same experience later in life if we learn to ride a bicycle (Figure 4.1). A bicycle is even more unstable than a person. If you ride a bicycle, you are constantly adjusting your position to maintain your stability and to remain upright. If the bicycle tilts slightly to the left, you automatically lean slightly to the right to provide a force that tips it back again. You make these adjustments unconsciously. You know intuitively that, if you let the bicycle tilt too far, you will not be able to recover the situation, and you will end up sprawling on the ground.

Figure 4.1 This cyclist must balance with great care because the load he is carrying on his head makes him even more unstable.

4.1 The moment of a force

Figure 4.2 shows a boy who is trying to open a heavy door by pushing on it. He must make the *turning effect* of his force as big as possible. How should he push?

First of all, look for the **pivot** – the fixed point about which the door will turn. This is the hinge of the door. To open the door, push with as big a force as possible, and as far as possible from the pivot – at the other edge of the door. (That is why the door handle is fitted there.) To have a big turning effect, the person must push hard at *right angles* to the door. Pushing at a different angle gives a smaller turning effect.

The quantity that tells us the turning effect of a force about a pivot is its **moment**.

- The moment of a force is bigger if the force is bigger.
- The moment of a force is bigger if it acts further from the pivot.
- ◆ The moment of a force is greatest if it acts at 90° to the object it acts on.

Making use of turning effects

Figure 4.3 shows how understanding moments can be useful.

- Using a crowbar to lift a heavy paving slab pull near the end of the bar, and at 90°, to have the biggest possible turning effect.
- ◆ Lifting a load in a wheelbarrow the long handles help to increase the moment of the lifting force.

Balancing a beam

Figure **4.4** shows a small child sitting on the left-hand end of a see-saw. Her weight causes the see-saw to tip down

Figure 4.2 Opening a door – how can the boy have a big turning effect?

on the left. Her father presses down on the other end. If he can press with a force greater than her weight, the see-saw will tip to the right and she will come up in the air.

Now, suppose the father presses down closer to the pivot. He will have to press with a greater force if the turning effect of his force is to overcome the turning effect of his daughter's weight. If he presses at half the

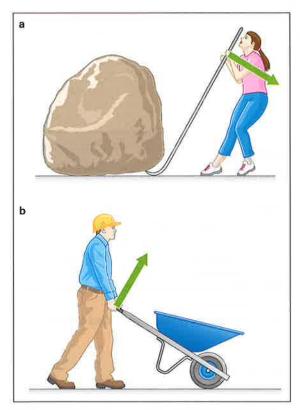
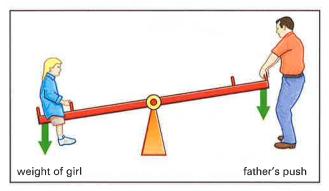



Figure 4.3 Understanding moments can help in some difficult tasks.

Figure 4.4 Two forces are causing this see-saw to tip. The girl's weight causes it to tip to the left, while her father provides a force to tip it to the right. He can increase the turning effect of his force by increasing the force, or by pushing down at a greater distance from the pivot.

distance from the pivot, he will need to press with twice the force to balance her weight.

A see-saw is an example of a *beam*, a long, rigid object that is pivoted at a point. The girl's weight is making the beam tip one way. The father's push is making it tip the other way. If the beam is to be balanced, the moments of the two forces must cancel each other out.

Equilibrium

When a beam is balanced, we say that it is in **equilibrium**. If an object is in equilibrium:

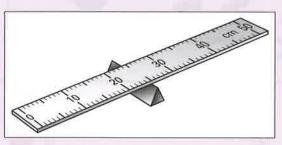
 the forces on it must be balanced (no resultant force) the turning effects of the forces on it must also be balanced (no resultant turning effect).

If a resultant force acts on an object, it will start to move off in the direction of the resultant force. If there is a resultant turning effect, it will start to rotate.

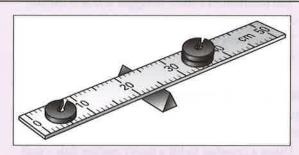
Study tip

In science and in other subjects, you will often hear about things that are 'in equilibrium'. This always means that two or more things are balanced.

Activity 4.1 Balancing


Skills

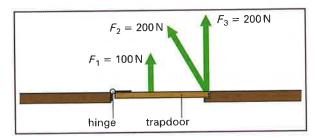
AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)


AO3.3 Make and record observations, measurements and

AO3.4 Interpret and evaluate experimental observations and data

Can you make a beam balance?

- 1 Practise balancing the beam on the pivot. It should balance at its midpoint, as shown.
- 2 Check that the beam will still balance when you place single weights on each side at equal distances from the pivot.


3 Try different combinations of weights. For example, place 2 N at 20 cm from the pivot. Where must you place a 1 N weight to balance this? Copy the table shown and record your results in it. Can you see a pattern?

Weight on left/N	Distance from pivot/cm	Weight on right/N	Distance from pivot/cm

4 Can you balance the beam with a single weight? You will have to move the pivot from the midpoint. Can you work out how to use this method to measure the mass of the beam?

Questions

4.1 Three different forces are shown pulling on a heavy trapdoor. Which force will have the biggest turning effect? Explain your answer.

4.2 A tall tree can survive a gentle breeze but it may be blown over by a high wind. Explain why a tall tree is more likely to blow over than a short tree.

4.2 Calculating moments

We have seen that, the greater a force and the further it acts from the pivot, the greater is its moment. We can write an equation for calculating the moment of a force, as shown.

Key definition

moment of a force – the turning effect of a force about a point.

moment of a force

= force × perpendicular distance from pivot to force

Now let us consider the unit of moment. Since moment is a force (N) multiplied by a distance (m), its unit is simply the newton metre (N m). There is no special name for this unit in the SI system.

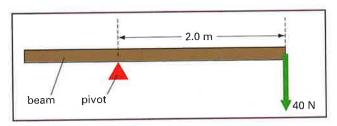


Figure 4.5 Calculating the moment of a force.

Figure 4.5 shows an example. The $40\,\mathrm{N}$ force is $2.0\,\mathrm{m}$ from the pivot, so:

moment of force = $40 \text{ N} \times 2.0 \text{ m} = 80 \text{ N} \text{ m}$

Study tip

If distances are given in cm, the unit of moment will be N cm. Take care not to mix these different units (N m and N cm) in a single calculation.

Balancing moments

The three children in Figure 4.6 have balanced their see-saw – it is in equilibrium. The weight of the child on the left is tending to turn the see-saw anticlockwise. So the weight of the child on the left has an anticlockwise moment. The weights of the two children on the right have clockwise moments.

From the data in Figure 4.6, we can calculate these moments:

anticlockwise moment = $500 \times 2.0 = 1000 \text{ N m}$ clockwise moments = $(300 \times 2.0) + (400 \times 1.0)$ = 600 N m + 400 N m= 1000 N m

(The brackets are included as a reminder to perform the multiplications before the addition.) We can see that, in this situation:

total clockwise moment = total anticlockwise moment

So the see-saw in Figure 4.6 is balanced.

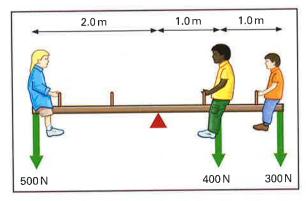
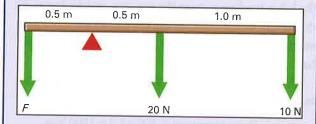



Figure 4.6 A balanced see-saw. On her own, the child on the left would make the see-saw turn anticlockwise; her weight has an anticlockwise moment. The weight of each child on the right has a clockwise moment. Since the see-saw is balanced, the sum of the clockwise moments must equal the anticlockwise moment.

The idea that an object is balanced when clockwise and anticlockwise moments are equal is known as the **principle of moments**. We can use this principle to find the value of an unknown force or distance, as shown in Worked example 4.1.

Worked example 4.1

The beam shown in the illustration below is $2.0 \,\mathrm{m}$ long and has a weight of $20 \,\mathrm{N}$. It is pivoted as shown. A force of $10 \,\mathrm{N}$ acts downwards at one end. What force F must be applied downwards at the other end to balance the beam?

Step 1: Identify the clockwise and anticlockwise forces. Two forces act clockwise: 20 N at a distance of 0.5 m, and 10 N at 1.5 m.

One force acts anticlockwise: the force *F* at 0.5 m.

Step 2: Since the beam is in equilibrium, we can write

total clockwise moment = total anticlockwise moment

Step 3: Substitute in the values from Step 1, and solve.

$$(20 \text{ N} \times 0.5 \text{ m}) + (10 \text{ N} \times 1.5 \text{ m}) = F \times 0.5 \text{ m}$$

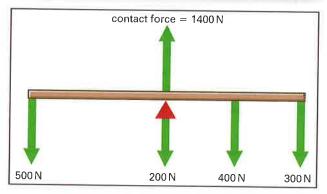
 $10 \text{ N} \text{ m} + 15 \text{ N} \text{ m} = F \times 0.5 \text{ m}$
 $25 \text{ N} \text{ m} = F \times 0.5 \text{ m}$
 $F = \frac{25 \text{ Nm}}{0.5 \text{ m}} = 50 \text{ N}$

So a force of 50 N is needed.

(You might have been able to work this out in your head, by looking at the diagram. The $20\,\mathrm{N}$ weight requires $20\,\mathrm{N}$ to balance it, and the $10\,\mathrm{N}$ at $1.5\,\mathrm{m}$ needs $30\,\mathrm{N}$ at $0.5\,\mathrm{m}$ to balance it. So the total force needed is $50\,\mathrm{N}$.)

In equilibrium

In the drawing of the three children on the see-saw (Figure 4.6), three forces are shown acting downwards. There is also the weight of the see-saw itself, 200 N, to consider, which also acts downwards, through its midpoint. If these were the *only* forces acting, they would make the see-saw accelerate downwards. Another force acts to prevent this from happening. There is an upward *contact force* where the see-saw sits on the pivot. Figure 4.7 shows all five forces.


Because the see-saw is in equilibrium, we can calculate this contact force. It must balance the four downward forces, so its value is $(500+200+400+300)\,\mathrm{N}=1400\,\mathrm{N}$, upwards. This force has no turning effect because it acts through the pivot. Its distance from the pivot is zero, so its moment is zero.

Now we have satisfied the two conditions that must be met if an object is to be in equilibrium:

- there must be no resultant force acting on it
- ◆ total clockwise moment = total anticlockwise moment. You can use these two rules to solve problems concerning the forces acting on objects in equilibrium.

Study tip

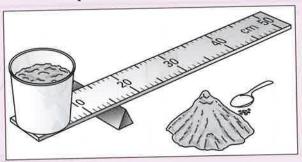
Sometimes we know that the forces and moments acting on an object are balanced. Then we can say that it is in equilibrium. Sometimes we know the reverse, namely, that an object is in equilibrium. Then we can say that there is no resultant force on it, and no resultant moment.

Figure 4.7 A force diagram for the see-saw shown in Figure **4.6**. The upward contact force of the pivot on the see-saw balances the downward forces of the children's weights and the weight of the see-saw itself. The contact force has no moment about the pivot because it acts through the pivot. The weight of the see-saw is another force that acts through the pivot, so it also has no moment about the pivot.

Activity 4.2 A question of balance

Skills

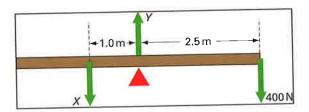
- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- AO3.3 Make and record observations, measurements and estimates
- AO3.4 Interpret and evaluate experimental observations and data

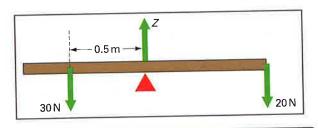

Predict the forces on a balanced beam.

Part 1

- 1 Set up a 0.5 m beam on a pivot so that it is balanced at its midpoint.
- 2 Place a 5N weight at a distance of 15 cm from the pivot.
- 3 Now calculate the weight that must be placed 20 cm from the pivot to balance the beam.
- 4 Place a small container 20 cm from the pivot. Add weights to the container until the beam is balanced. (You can do this by pouring in sand, or by adding small pieces of modelling clay.)
- 5 Test your calculation by weighing the container and its contents. Was your calculation correct?

Part 2


- 6 Weigh a 50 cm beam.
- 7 You are going to balance the beam on a pivot using a single weight, placed at the end of the beam, as shown. Find a suitable weight (similar in size to the weight of the beam) and calculate where the pivot must be to balance the beam.


8 Balance the beam. Was your calculation correct?

Questions

4.3 Calculate the unknown forces *X* and *Y* for the balanced beam shown.

4.4 The beam shown is balanced at its midpoint. The weight of the beam is 40 N. Calculate the unknown force Z, and the length of the beam.

4.3 Stability and centre of mass

People are tall and thin, like a pencil standing on end. Unlike a pencil, we do not topple over when touched by the slightest push. We are able to remain upright, and to walk, because we make continual adjustments to the positions of our limbs and body. We need considerable brain power to control our muscles for this. The advantage is that, with our eyes about a metre higher than if we were on all-fours, we can see much more of the world.

Circus artistes such as tightrope walkers and highwire artistes (Figure 4.8) have developed the skill of remaining upright to a high degree. They use items such as poles or parasols to help them maintain their balance. The idea of moments can help us to understand why some objects are stable while others are more likely to topple over.

A tall glass is easily knocked over – it is unstable. It could be described as top-heavy, because most of its mass is concentrated high up, above its

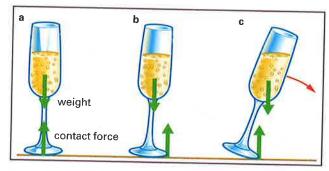
stem. Figure 4.9 shows what happens if the glass is tilted.

- **a** When the glass is upright, its weight acts downwards and the contact force of the table acts upwards. The two forces are in line, and the glass is in equilibrium.
- b If the glass is tilted slightly to the right, the forces are no longer in line. There is a pivot at the point where the base of the glass is in contact with the table. The line of the glass's weight is to the left of this pivot, so it has an anticlockwise moment, which tends to tip the glass back to its upright position.
- **c** Now the glass is tipped further. Its weight acts to the right of the pivot, and has a clockwise moment, which makes the glass tip right over.

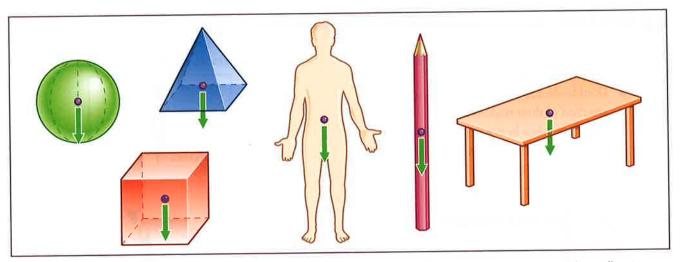
Centre of mass

In Figure 4.9, the weight of the glass is represented by an arrow starting at a point inside the liquid in the bowl of the glass. Why is this? The reason is that the glass behaves as if all of its mass were concentrated at this point, known as the **centre of mass**. The glass is top-heavy because its centre of mass is high up. The force of gravity acts on the mass of the glass – each bit of the glass is pulled by the Earth's gravity. However, rather than drawing lots of weight arrows, one for each bit of the glass, it is simpler to draw a single arrow acting through the centre of mass. (Because we can think of the weight of the glass acting at this point, it is sometimes known as the *centre of gravity*.)

Figure 4.8 This high-wire artiste is using a long pole to maintain her stability on the wire. If she senses that her weight is slightly too far to the left, she can redress the balance by moving the pole to the right. Frequent, small adjustments allow her to walk smoothly along the wire.


Figure 4.10 shows the position of the centre of mass for several objects. A person is fairly symmetrical, so their centre of mass must lie somewhere on the axis of symmetry. (This is because half of their mass is on one side of the axis, and half on the other.) The centre of mass is in the middle of the body, roughly level with the navel. A ball is much more symmetrical, and its centre of mass is at its centre.

For an object to be stable, it should have a low centre of mass and a wide base. The pyramid in Figure 4.10 is an example of this. (The Egyptian pyramids are among the Wonders of the World. It has been suggested that, if they had been built the other way up, they would have been even greater wonders!) The high-wire artiste shown in Figure 4.8 has to adjust her position so that her centre of mass remains above her 'base' – the point where her feet make contact with the wire.


Finding the centre of mass

Balancing is the clue to finding an object's centre of mass. A metre rule balances at its midpoint, so that is where its centre of mass must lie.

The procedure for finding the centre of mass of a more irregularly shaped object is shown in Figure 4.11. In this case, the object is a piece of card, described as a plane lamina. The card is suspended from a pin. If it is free to move, it hangs with its centre of mass below the point of suspension. (This is because its weight pulls it round until the weight and the contact force at the pin are lined up. Then there is no moment about the pin.) A plumb-line is used to mark a vertical line below the pin. The centre of mass must lie on this line.

Figure 4.9 A tall glass is easily toppled. Once the line of action of its weight is beyond the edge of the base, as in **c**, the glass tips right over.

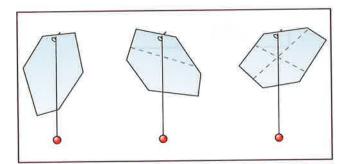


Figure 4.10 The weight of an object acts through its centre of mass. Symmetry can help to judge where the centre of mass lies. An object's weight can be considered to act through this point. Note that, for the table, its centre of mass is in the air below the table top.

The process is repeated for two more pinholes. Now there are three lines on the card, and the centre of mass must lie on all of them, that is, at the point where they intersect. (Two lines might have been enough, but it is advisable to use at least three points to show up any inaccuracies.)

Study tip

Whatever experiment you are performing, it is important to think about how the experiment is designed to reduce inaccuracies.

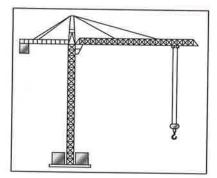
Figure 4.11 Finding the centre of mass of an irregularly shaped piece of card. The card hangs freely from the pin. The centre of mass must lie on the line indicated by the plumb-line hanging from the pin. Three lines are enough to find the centre of mass.

Activity 4.3 Centre of mass of a plane lamina

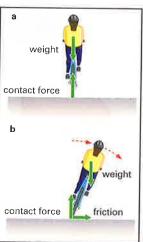
Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- AO3.3 Make and record observations, measurements and estimates
- A03.4 Interpret and evaluate experimental observations and data

Find the centre of mass of a sheet of card.


- 1 Cut a shape from the card. This is your lamina.
- 2 Use the pin to make three holes around the edge of the lamina.

- 3 Fix the pin horizontally in the clamp.
- 4 Using one hole, hang the lamina from the pin. Make sure that it can turn freely.
- 5 Hang the string from the pin so that the weight makes it hang vertically. Mark two points on the lamina along the length of the string.
- 6 Repeat steps 4 and 5 using the other two holes.
- 7 Lay the lamina on the bench and, using a ruler, draw lines joining each pair of points. Where the lines cross is the centre of mass of the lamina.


If the three lines cross exactly at a point, you have done well!

Questions

- **4.5** Use the ideas of *stability* and *centre of mass* to explain the following.
 - **a** Double-decker buses have heavy weights attached to their undersides.
 - **b** The crane has a heavy concrete block attached to one end of its arm, and others placed around its base.

4.6 The diagram shows the forces acting on a cyclist.

Look at part a of the diagram.

a Explain how you can tell that the cyclist shown in part **a** is in equilibrium.

Now look at part b of the diagram.

- **b** Are the forces on the cyclist balanced now? How can you tell?
- **c** Would you describe the cyclist as *stable* or *unstable*? Explain your answer.

Summary

You should know:

- about the moment of a force
- the conditions for a system to be in equilibrium
- what is meant by centre of mass and stability
- how to calculate moments and resultant forces
- about the principle of moments.

End-of-chapter questions

- 1 Copy the sentences that follow, choosing the correct word from each pair.
 - a If a force increases, its moment will increase / decrease.
 - **b** If a force acts at a greater distance from the pivot, its moment will increase/decrease.
- 2 Copy the sentences that follow, filling the gaps with suitable words.
 - a When a body is in equilibrium, the force acting on it is zero.
 - ${f b}$ When a body is in equilibrium, the resultant turning effect acting on it is

- a Draw diagrams to show two objects: one with a low centre of mass and a wide base, the other with a high centre of mass and a narrow base. Mark and label the centre of mass of each.
 - **b** Label your diagrams *stable object* and *unstable object* correctly.
- 4 A force *F* acts on a long, straight beam, at a distance *x* from a pivot.
 - a Draw a diagram to represent this.
 - **b** Write the equation you would use to calculate the moment of the force.
 - c Copy and complete the table to show the units of each of these quantities. (Give the symbol for each unit.)

Quantity	Unit
force	
distance	
moment of force	

5 What quantity is a measure of the turning effect of a force?

[1]

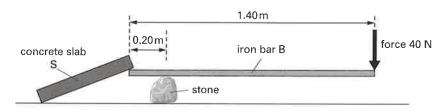
6 What **two** conditions must be met if an object is to be in equilibrium?

- [2]
- Write out step-by-step instructions for an experiment to find the position of the centre of mass of a plane lamina.
- [5]
- 8 The diagram shows a 3.0 m uniform beam AB, pivoted 1.0 m from the end A. The weight of the beam is 200 N.

a Copy the diagram and mark the beam's centre of mass.

- [1]
- **b** Add arrows to show the following forces: the weight of the beam; the contact force on the beam at the pivot.
- [2]
- **c** A third force *F* presses down on the beam (at end point A). What value of *F* is needed to balance the beam?
- [5]
- **d** When this force is applied, what is the value of the contact force that the pivot exerts on the beam?
- [3]

- 9 a Copy and complete the following statement:
 - The moment of a force about a point is multiplied by

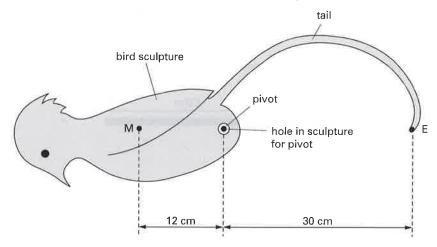

[1]

[1]

[2]

[1]

b The diagram shows a uniform iron bar B of weight 30 N and length 1.40 m. The bar is being used to lift one edge of a concrete slab S. A stone, placed 0.20 m from one end of B, acts as a pivot.

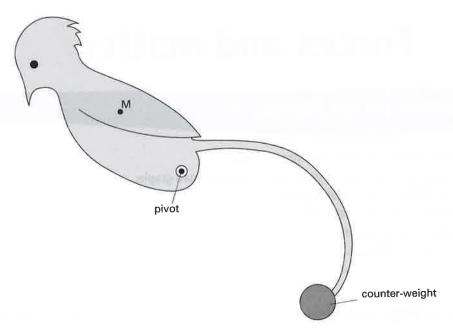


A force of 40 N pushing down at the other end of B is just enough to lift the slab and hold it as shown.

- i Copy the diagram and draw an arrow to show the weight of bar B acting from its centre of mass.
- ii State the distance *d* of the centre of mass of bar B from the pivot. [1]
- iii Calculate the total clockwise moment, about the pivot, of the forces acting on bar B. [3]
- iv Calculate the downward force which the slab S exerts on the end of bar B. [2]
- v Suggest a change to the arrangement in the diagram that would reduce the force required to lift the slab. [1]

[Cambridge IGCSE® Physics 0625/33, Question 3, May/June, 2011]

10 The diagram shows a mobile bird sculpture that has been created by an artist.



M is the centre of mass of the bird sculpture, including its tail (but not including the counter-weight that will be added later). The mass of the bird and tail is 1.5 kg.

The bird sculpture is placed on a pivot. The artist adds the counter-weight at the end E of the tail so that the bird remains stationary in the position shown.

- a Calculate the mass of the counter-weight.
- The centre of mass of the sculpture with counter-weight is at the pivot. Calculate the upward force acting at the pivot.

c The sculpture is rotated clockwise to the position shown in the second diagram. It is held still, then carefully released.

- i State whether the sculpture will stay in that position, rotate further clockwise or rotate back anticlockwise.
- ii Explain your answer to i.

[3]

[Cambridge IGCSE® Physics 0625/32, Question 2, May/June, 2012]

5 Forces and matter

In this chapter, you will find out:

- that forces change the shape and size of a body
- how to carry out experiments to produce extension—load graphs
- ♦ how to interpret extension—load graphs
- about Hooke's law and how to apply it
 - what factors affect pressure
 - how to calculate pressure.

5.1 Forces acting on solids

Forces can change the size and shape of an object. They can stretch, squash, bend or twist it. Figure 5.1 shows the forces needed for these different ways of deforming

stretched compressed (compressive forces)

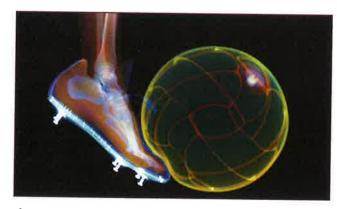

bent twisted (bending forces) (torsional forces)

Figure 5.1 Forces can change the size and shape of a solid object. These diagrams show four different ways of deforming a solid object.

an object. You could imagine holding a cylinder of foam rubber, which is easy to deform, and changing its shape in each of these ways.

Foam rubber is good for investigating how things deform, because, when the forces are removed, it springs back to its original shape. Here are two more examples of materials that deform in this way:

◆ When a football is kicked, it is compressed for a short while (see Figure 5.2). Then it springs back to its original shape as it pushes itself off the foot of the player who has kicked it. The same is true for a tennis ball when struck by a racket.

Figure 5.2 This remarkable X-ray image shows how a football is compressed when it is kicked. It returns to its original shape as it leaves the player's boot. (This is an example of an elastic deformation.) The boot is also compressed slightly but, because it is stiffer than the ball, the effect is less noticeable.

Bungee jumpers rely on the springiness of the rubber rope, which breaks their fall when they jump from a height. If the rope became permanently stretched, they would stop suddenly at the bottom of their fall, rather than bouncing up and down and gradually coming to a halt.

Some materials are less springy. They become permanently deformed when forces act on them.

- When two cars collide, the metal panels of their bodywork are bent. In a serious crash, the solid metal sections of the car's chassis are also bent.
- Gold and silver are metals that can be deformed by hammering them (see Figure 5.3). People have known for thousands of years how to shape rings and other ornaments from these precious metals.

5.2 Stretching springs

To investigate how objects deform, it is simplest to start with a spring. Springs are designed to stretch a long way when a small force is applied, so it is easy to measure how their length changes.

Figure 5.4 shows how to carry out an investigation on stretching a spring. The spring is hung from a rigid clamp, so that its top end is fixed. Weights are hung on the end of the spring – these are referred to as the **load**. As the load is increased, the spring stretches and its length increases.

Figure 5.5 shows the pattern observed as the load is increased in regular steps. The length of the spring increases (also in regular steps). At this stage the spring will return to its original length if the load is removed. However, if the load is increased too far, the spring becomes permanently stretched and will not

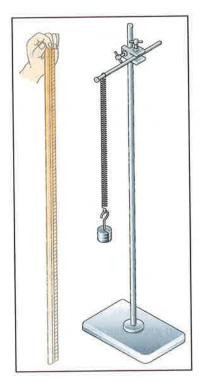
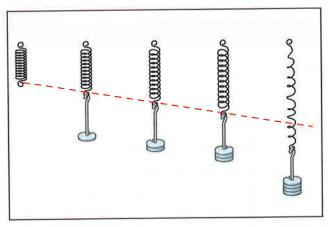



Figure 5.4 Investigating the stretching of a spring.

Figure 5.3 A Tibetan silversmith making a wrist band. Silver is a relatively soft metal at room temperature, so it can be hammered into shape without the need for heating.

Figure 5.5 Stretching a spring. At first, the spring deforms elastically. It will return to its original length when the load is removed. Eventually, however, the load is so great that the spring is damaged.

return to its original length. It has been *inelastically* deformed.

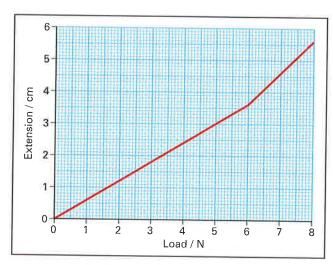
Extension of a spring

As the force stretching the spring increases, it gets longer. It is important to consider the increase in length of the spring. This quantity is known as the **extension**.

length of stretched spring

= original length + extension

Table 5.1 shows how to use a table with three columns to record the results of an experiment to stretch a spring. The third column is used to record the value of the extension, calculated by subtracting the original length from the value in the second column.


To see how the extension depends on the load, we draw an extension—load graph (Figure 5.6). You can see that the graph is in two parts.

- At first, the graph slopes up steadily. This shows that the extension increases in equal steps as the load increases.
- ◆ Then the graph bends. This happens when the load is so great that the spring has become permanently damaged. It will not return to its original length.

(You can see the same features in Table 5.1. Look at the third column. At first, the numbers go up in equal steps. The last two steps are bigger.)

Load/N	Length/cm	Extension/cm
0.0	24.0	0.0
1.0	24.6	0.6
2.0	25.2	1.2
3.0	25.8	1.8
4.0	26.4	2.4
5.0	27.0	3.0
6.0	27.6	3.6
7.0	28.6	4.6
8.0	29.5	5.6

Table 5.1 Results from an experiment to find out how a spring stretches as the load on it is increased.

Figure 5.6 An extension–load graph for a spring, based on the data in Table **5.1**.

Activity 5.1 Investigating springs

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

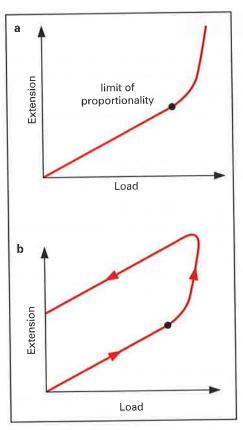
AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

Use weights to stretch a spring, and then plot a graph to show the pattern of your results.

- 1 Select a spring.
- 2 Fix the upper end of the spring rigidly in a clamp.
- 3 Position a ruler next to the spring so that you can measure the complete length of the spring, as shown in Figure 5.4.
- 4 Measure the unextended length of the spring.
- 5 Prepare a table for your results, similar to Table 5.1. Record your results in your table as you go along.
- 6 Attach a weight hanger to the lower end of the spring. Measure its new length.
- 7 Carefully add weights to the hanger, one at a time, measuring the length of the spring each time.
- 8 Once you have a complete set of results, calculate the values of the extension of the spring.
- 9 Plot a graph of extension (*y*-axis) against load (*x*-axis) and comment on its shape.

Questions


- **5.1** A piece of elastic cord is 80 cm long. When it is stretched, its length increases to 102 cm. What is its extension?
- **5.2** The table shows the results of an experiment to stretch an elastic cord. Copy and complete the table, and draw a graph to represent this data.

Load/N	Length/mm	Extension/mm
0.0	50	0
1.0	54	
2.0	58	
3.0	62	
4.0	66	
5.0	70	
6.0	73	
7.0	75	
8.0	76	

5.3 Hooke's law

The mathematical pattern of the stretching spring was first described by the English scientist Robert Hooke. He realised that, when the load on the spring was doubled, the extension also doubled. Three times the load gave three times the extension, and so on. This shows up in the graph in Figure 5.7. The graph shows how the extension depends on the load. At first, the graph is a straight line, leading up from the origin. This shows that the extension is proportional to the load.

At a certain point, the graph bends and the line slopes up more steeply. This point is called the **limit of proportionality**. (This point is also known as the *elastic limit*.) If the spring is stretched beyond this point, it will be permanently damaged. If the load is removed, the spring will not return all the way to its original, undeformed length.

Figure 5.7 a An extension–load graph for a spring. Beyond the limit of proportionality, the graph is no longer a straight line, and the spring is permanently deformed. **b** This graph shows what happens when the load is removed. The extension does not return to zero, showing that the spring is now longer than at the start of the experiment.

The behaviour of the spring is represented by the graph of Figure 5.7a and is summed up by **Hooke's law**:

The extension of a spring is proportional to the load applied to it, provided the limit of proportionality is not exceeded.

We can also write Hooke's law as an equation:

$$F = kx$$

In this equation, F is the load (force) stretching the spring, k is the spring constant of the spring, (a measure of its stiffness) and x is the extension of the spring.

Study tip

If you double the load that is stretching a spring, the spring will not become twice as long. It is the extension that is doubled.

Worked example 5.1

A spring has a spring constant k = 20 N/cm. What load is needed to produce an extension of 2.5 cm?

Step 1: Write down what you know and what you want to find out.

load F = ?

spring constant $k = 20 \,\text{N/cm}$

extension = 2.5 cm

Step 2: Write down the equation linking these quantities, substitute values and calculate the result.

F = kx $F = 20 \times 2.5 = 50 \text{ N}$

So a load of 50 N will stretch the spring by 2.5 cm.

How rubber behaves

A rubber band can be stretched in a similar way to a spring. As with a spring, the bigger the load, the bigger the extension. However, if the weights are added with great care, and then removed one by one without releasing the tension in the rubber, the following can be observed:

- The graph obtained is not a straight line. Rather, it has a slightly S-shaped curve. This shows that the extension is not exactly proportional to the load. Rubber does not obey Hooke's law.
- ◆ Eventually, increasing the load no longer produces any extension. The rubber feels very stiff. When the load is removed, the graph does not come back exactly to zero.

Activity 5.2 Investigating rubber

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.3 Make and record observations, measurements and estimates

A03.4 Interpret and evaluate experimental observations and data

Carry out an investigation into the stretching of a rubber band. This is a good test of your experimental skills. You will need to work carefully if you are to see the effects described above.

- 1 Hang a rubber band from a clamp. Attach a weight hanger at the lower end so that the band hangs straight down.
- **2** Clamp a ruler next to the band so that you can measure the length of the rubber band.
- 3 Prepare a table for your results.
- 4 One by one, add weights to the hanger. Record the length of the band each time. Add the weights carefully so that you do not allow the band to contract as you add them.
- 5 Next, remove the weights one by one. Record the length of the band each time. Remove the weights carefully so that you do not stretch the band or allow it to contract too much.
- 6 Calculate the extension corresponding to each weight.
- 7 Plot your results on a single graph. Can you see the effect shown in Figure 5.7b?

Hooke and springs

Why was Robert Hooke so interested in springs? Hooke was a scientist, but he was also a great inventor. He was interested in springs for two reasons:

 Springs are useful in making weighing machines, and Hooke wanted to make a weighing machine that was both very sensitive (to weigh very light objects) and very accurate (to measure very precise quantities).

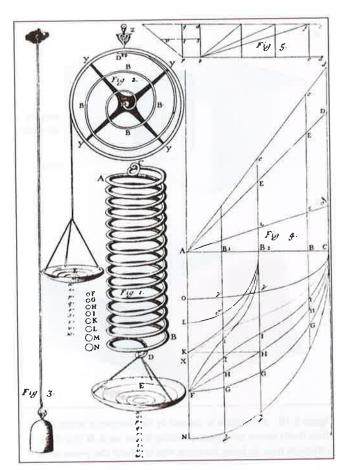


Figure 5.8 Robert Hooke's diagrams of springs.

◆ He also realised that a spiral spring could be used to control a clock or even a wristwatch.

Figure 5.8 shows a set of diagrams drawn by Hooke, including a long spring and a spiral spring, complete with pans for carrying weights. You can also see some of his graphs.

For scientists, it is important to publish results so that other scientists can make use of them. Hooke was very secretive about some of his findings, because he did not want other people to use them in their own inventions. For this reason, he published some of his findings in code. For example, instead of writing his law of springs as given above, he wrote this: ceiiinossstuv. Later, when he felt that it was safe to publish his ideas, he revealed that this was an anagram of a sentence in Latin. Decoded, it said: Ut tensio, sic vis. In English, this is: 'As the extension increases, so does the force.' In other words, the extension is

proportional to the force producing it. You can see Hooke's straight-line graph in Figure 5.8.

Questions

- **5.3** A spring requires a load of 2.5 N to increase its length by 4.0 cm. The spring obeys Hooke's law. What load will give it an extension of 12 cm?
- **5.4** A spring has an unstretched length of 12.0 cm. Its spring constant *k* is 8.0 N/cm. What load is needed to stretch the spring to a length of 15.0 cm?
- 5.5 The results of an experiment to stretch a spring are shown in table. Use the results to plot an extension—load graph. On your graph, mark the limit of proportionality and state the value of the load at that point.

Load/N	Length/m
0.0	0.800
2.0	0.815
4.0	0.830
6.0	0.845
8.0	0.860
10.0	0.880
12.0	0.905

5.4 Pressure

If you dive into a swimming pool, you will experience the pressure of the water on you. It provides the upthrust on you, which pushes you back to the surface. The deeper you go, the greater the pressure acting on you. Deep-sea divers have to take account of this. They wear protective suits, which will stop them being crushed by the pressure. Submarines and marine exploring vehicles (Figure 5.9) must be designed to withstand very great pressures. They have curved surfaces, which are less likely to buckle under pressure, and they are made of thick metal.

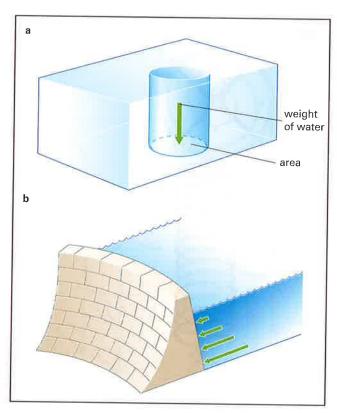
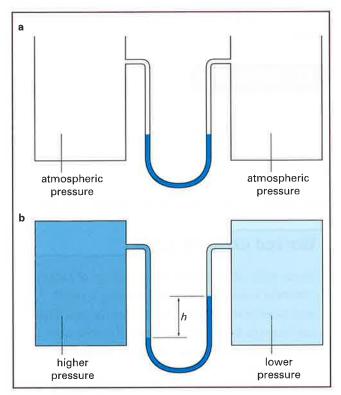

This pressure comes about because any object under water is being pressed down on by the

Figure 5.9 This underwater exploring vehicle is used to carry tourists to depths of 600 m, where the pressure is 60 times that at the surface. The design makes use of the fact that spherical and cylindrical surfaces stand up well to pressure. The viewing window is made of acrylic plastic and is 9.5 cm thick.

weight of water above it. The deeper you go, the greater the amount of water pressing down on you (see Figure 5.10a). In a similar way, the atmosphere exerts pressure on us, although we are not normally conscious of this. The Earth's gravity pulls it downwards, so that the atmosphere presses downwards on our heads. Mountaineers climbing to the top of Mount Everest rise through two-thirds of the atmosphere, so the pressure is only about one-third of the pressure down at sea-level. There is much less air above them, pressing down.

The pressure caused by water is much greater than that caused by air because water is much denser than air. Figure 5.10b shows how a dam is designed to

Figure 5.10 a Pressure is caused by the weight of water (or other fluid) above an object, pressing down on it. **b** This dam is thickest near its base, because that is where the pressure is greatest.

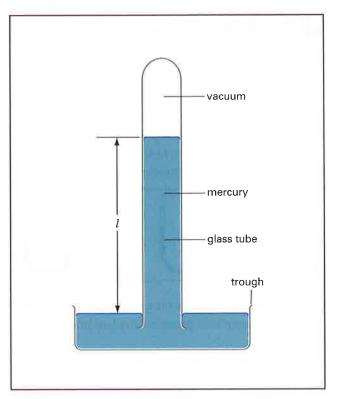

withstand the pressure of the water behind it. Because the pressure is greatest at the greatest depth, the dam must be made thickest at its base.

In a fluid such as water or air, pressure does not simply act downwards – it acts equally in all directions. This is because the molecules of the fluid move around in all directions, causing pressure on every surface they collide with.

Pressure measurements

A **manometer** is a simple instrument for showing the difference in pressure between two gases or liquids. Figure 5.11 shows how a manometer is used to measure the pressure of the laboratory gas supply. This pressure must be higher than atmospheric pressure, or gas would not flow out of the pipe.

- A manometer is a U-shaped tube, holding a small amount of liquid.
- When both ends are open, the levels of the liquid in the two sides are the same.


Figure 5.11 Using a manometer to measure the pressure difference between two gases. **a** With atmospheric pressure on both sides of the U-tube, the liquid is at the same level in both sides. **b** With higher pressure on one side, the liquid is pushed round. The greater the pressure difference, the greater is the difference in levels, *h*.

◆ If one side is connected to the gas supply, the gas pushes down on the liquid and forces it round the bend. The levels are now unequal, showing that there is a difference in pressure.

A **barometer** can be used to measure atmospheric pressure. One simple type, the mercury barometer, is shown in Figure 5.12. It consists of a long glass tube, at least 80 cm in length. The tube is filled with mercury and then carefully inverted into a trough containing mercury. This must be done carefully, so that no air enters the tube.

Once the tube is safely inverted, the level of mercury in the tube drops. The length l of the mercury column, measured from the surface of the mercury in the trough, is about 76 cm. The space above the mercury column is a vacuum (with a small amount of mercury vapour).

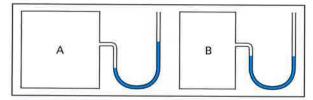
The column length l depends on the atmospheric pressure. On a day when the atmospheric pressure is high, the air presses more strongly on the mercury in the trough, so that it rises further in the tube. If the

Figure 5.12 A mercury barometer is used to measure atmospheric pressure.

pressure falls, the force on the mercury decreases, and the level in the tube decreases.

Mercury is used in barometers like this because it has a high density (more than 13 times the density of water). A barometer made using water would require a much taller tube, over 10 m in height!

Study tip


You may see atmospheric pressure given as 760 mm Hg. The units 'mm Hg' mean millimetres of mercury, the height of the mercury column. These are not SI units.

Activity 5.3 Pressure experiments

Try out some simple experiments to explore the idea of pressure.

Questions

- **5.6** Name an instrument that is used to measure:
 - a atmospheric pressure
 - **b** differences in pressure.
- **5.7** The diagram shows two closed tanks, A and B. Each tank contains gas and is fitted with a manometer to show how the pressure compares with atmospheric pressure outside the tank.

- **a** In which tank is the gas pressure greater than atmospheric pressure? Explain how you can tell.
- **b** What can you say about the pressure of the gas in the other tank?

5.5 Calculating pressure

A large force pressing on a small area gives a high pressure. We can think of **pressure** as the force per unit area acting on a surface, and we can write an equation for pressure, as shown.

Key definition

pressure – the force acting per unit area at right angles to a surface.

$$pressure = \frac{force}{area}$$
$$P = \frac{F}{A}$$

Now let us consider the unit of pressure. If force F is measured in newtons (N) and area A is in square metres (m²), then pressure p is in newtons per square metre

 (N/m^2) . In the SI system of units, this is given the name **pascal** (Pa).

Key definition

pascal (Pa) – the SI unit of pressure, equivalent to one newton per square metre (1 N/m^2) .

$$Pa = \frac{N}{m^2}$$

Worked example 5.2

Shoes with stiletto heels go in and out of fashion. ('Stiletto' is an Italian word meaning a small and murderous dagger.) Such very narrow heels can damage floors, and dance halls often have notices requiring shoes with such heels to be removed.

Calculate the pressure exerted by a woman dancer weighing 600 N standing on a single heel of area 1 cm². If the surface of the dance floor is broken by pressures over five million pascals (5.0 MPa), will it be damaged?

Step 1: To calculate the pressure, we need to know the force, and the area on which the force acts, in m².

force
$$F = 600 \text{ N}$$

area $A = 1 \text{ cm}^2 = 0.0001 \text{ m}^2 = 10^{-4} \text{ m}^2$

Step 2: Now we can calculate the pressure *p*.

$$p = \frac{F}{A}$$

$$= \frac{600 \text{ N}}{0.0001 \text{ m}^2}$$

$$= 60000000 \text{ Pa} = 6.0 \text{ MPa}$$

The pressure is thus 6.0×10^6 Pa, or 6.0 MPa. This is more than the minimum pressure needed to break the surface of the floor, so it will be damaged.

Questions

- **5.8** Write down an equation that defines pressure.
- **5.9** What is the SI unit of pressure?
- **5.10** Which exerts a greater pressure, a force of 100 N acting on 1.0 cm², or the same force acting on 2.0 cm²?
- **5.11** What pressure is exerted by a force of 40 000 N acting on 2.0 m²?
- **5.12** A swimming pool has a level, horizontal, bottom of area 10.0 m by 4.0 m. If the pressure of the water on the bottom is 15 000 Pa, what total force does the water exert on the bottom of the pool?

Pressure, depth and density

We have seen that the deeper one dives into water, the greater the pressure. Pressure p is proportional to depth h (we use the letter h, for height). Twice the depth means twice the pressure. Pressure also depends on the density ρ of the material (here ρ is the Greek letter 'rho'). If you dive into mercury, which is more than ten times as dense as water, the pressure will be more than ten times as great.

We can write an equation for the pressure at a depth h in a fluid of density ρ :

 $pressure = depth \times density \times acceleration due to gravity$ $p = h\rho g$

Study tip

You may prefer to use the symbol D to represent density, so p = hDg.

Worked example 5.3

Calculate the pressure on the bottom of a swimming pool 2.5 m deep. How does the pressure compare with atmospheric pressure, $10^5 \, \text{Pa}$? (Density of water = $1000 \, \text{kg/m}^3$.)

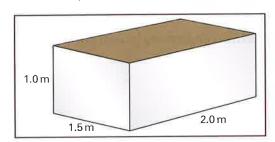
Step 1: Write down what you know, and what you want to know.

$$h = 2.5 \,\mathrm{m}$$

$$\rho = 1000 \,\mathrm{kg/m^3}$$

$$g = 10 \,\text{m/s}^2$$

$$p = 3$$


Step 2: Write down the equation for pressure, substitute values and calculate the answer.

$$p = h\rho g = 2.5 \text{ m} \times 1000 \text{ kg/m}^3 \times 10 \text{ m/s}^2$$

= $2.5 \times 10^4 \text{ Pa}$

This is one-quarter of atmospheric pressure. We live at the bottom of the atmosphere. There is about 10 km of air above us, pressing downwards on us – that is the origin of atmospheric pressure.

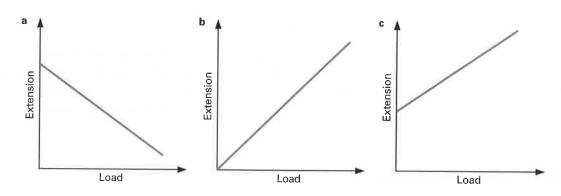
Questions

- 5.13 A water tank holds water to a depth of 80 cm. What is the pressure on the bottom of the tank? (Density of water = $1000 \, \text{kg/m}^3$.)
- **5.14** The diagram shows a tank that is filled with oil. The density of the oil is 920 kg/m³.

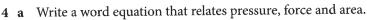
- **a** Calculate the volume of the tank from the dimensions shown in the diagram.
- **b** Calculate the weight of the oil in the tank.
- **c** The pressure on the bottom of the tank is caused by the weight of the oil. Calculate the pressure using:

$$p = \frac{F}{A}$$

d Now calculate the pressure using $p = h\rho g$. Do you find the same answer?


Summary

You should know:


- the effects of forces, including stretching
- S ◆ Hooke's law
- S how to interpret extension—load graphs
 - ◆ about the idea of pressure
 - how to calculate pressure from force and area
- S how to calculate pressure in fluids.

End-of-chapter questions

- 1 A student measures an unstretched spring. He adds weights to the spring and measures its new length each time.
 - a Copy the correct equation that shows how to calculate the extension of the spring.
 - extension = length of spring load
 - extension = original length length when stretched
 - extension = length when stretched original length
 - **b** Copy the correct graph to show how the extension of a spring changes as the load on it is increased.

- S 2 Hooke's law describes how the extension of a spring relates to the load on the spring.
 - a State Hooke's law in words.
 - **b** Hooke's law can be written as F = kx. Rewrite this as a word equation.
 - c Sketch an extension—load graph for a spring that obeys Hooke's law. Mark the part of the graph that shows that the spring obeys Hooke's law. Mark also the limit of proportionality.
 - 3 Copy and complete the following sentences, by writing either *increases* or *decreases* in each gap.
 - a Pressure when the force acting increases.
 - **b** Pressure when the force acts on a greater area.
 - c Pressure when you go deeper in a liquid.
 - **d** Pressure when you go higher in the atmosphere.

- Write the same equation in symbols.
- Copy and complete the table to show the unit for each quantity.

Quantity	Unit
force	
area	
pressure	

5	The pressure in a fluid of density ρ depends on the depth h . It also depends on the acceleration	due to
	gravity g.	

- What is a fluid?
- What is the value of *g* on the Earth's surface?
- Write an equation in symbols to show how to calculate the pressure in a fluid.

- 7 A student has a short spring. He is required to investigate how the length of the spring changes as the load stretching it increases. Describe the experimental procedure he should follow, stating the equipment he [6] should use and the measurements he should make.
- 8 The table shows the results of an experiment in which a long piece of plastic foam was stretched by hanging weights from one end.

Load/N	Length/cm	Extension/cm
0.0	83.0	0.0
5.0	87.0	
10.0	91.0	
15.0	95.0	
20.0	99.0	

- a Copy the table and complete the third column to show the value of the extension produced by each load. [4] [3]
- Use your completed table to plot an extension-load graph.
- [3] Draw a labelled diagram to show a simple mercury barometer.
 - Describe how such a barometer shows changes in atmospheric pressure. [1]
- 10 Your friend has fallen through the thin ice on a frozen pond. You come to the rescue by laying a ladder across the ice and crawling along the ladder to reach your friend. Use the idea of pressure to explain why it is safer to use the ladder than to walk on the ice.

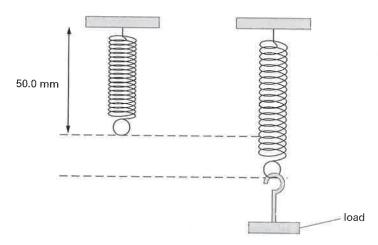
[3]

- An unstretched spring is 12.0 cm long. A load of 5.0 N stretches it to 15.0 cm. How long will it be under a load of 15 N? (Assume that the spring obeys Hooke's law.)
 - 12 A group of students carried out an experiment in which they stretched a length of wire by hanging weights on the end. For each value of the load, they measured the length of the wire. The table shows their results.

Load/N	0	10.0	20.0	30.0	40.0	50.0	60.0	70.0
Length/m	3.200	3.207	3.215	3.222	3.230	3.242	3.255	3.270

- a Copy the table and add a row showing the extension for each load.
- [4] re. [4]
- b Use the data in your table to draw an extension-load graph for the wire.c From your graph, determine the extension produced by a load of 25.0 N.

[2]


d Determine the value of the load at the limit of proportionality.

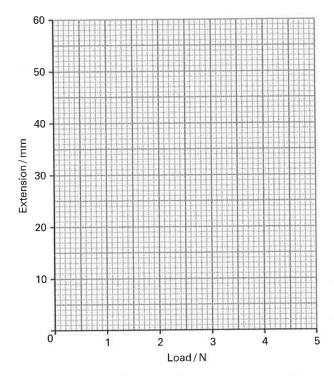
[2]

- 13 The pressure of the atmosphere is 100 000 Pa.
 - a Calculate the force with which the atmosphere presses on the outside of a large window 2.0 m high and 1.25 m wide.
- [3] [1]

b Explain why this force does not break the window.

- On a particular day, the height of the mercury column in a simple barometer is 760 mm. Calculate the atmospheric pressure on this day. (Density of mercury = $13600 \,\text{kg/m}^3$, $g = 10 \,\text{m/s}^2$.)
- [3]
- 15 An unstretched spring of overall length 50.0 mm is hung from a support, as shown in the diagram.

Different loads are placed on the spring and the extension is measured each time.


a Copy the diagram, and mark clearly on it the extension caused by the load.

[1]

b The extensions for different loads are given in the table.

Load/N	Extension/mm
0	0
1.0	10.0
2.0	20.5
3.0	31.0
4.0	41.5

i Copy the graph axes shown below onto graph paper. Plot these values in the table shown, using dots in small circles (③), and draw the best straight line for the points. [3]



- ii Copy and complete the following sentence by inserting the appropriate word.

 Within the limits of experimental accuracy, the load and the extension of the spring are

 to each other.
- iii A load of 2.5 N is hung on the spring.
 - 1. What does the letter N stand for? [1]
 - 2. Use the graph to estimate the overall length in mm of the spring when 2.5 N is hanging from it. [2] [Cambridge IGCSE® Physics 0625/22, Question 2, October/November, 2010]

16 a The diagram shows end views of the walls built by two bricklayers.

Which wall is the least likely to sink into the soil, and why?

b The diagram shows two horizontal squares P and Q.

The atmosphere is pressing down on both P and Q.

- Name **two** quantities that would need to be known in order to calculate the atmospheric pressure on square P.
- ii The area of P is four times that of Q.
 Copy and complete the following sentences.
 - 1. The atmospheric pressure on P is the atmospheric pressure on Q.
 - 2. The force of the atmosphere on P is the force of the atmosphere on Q.

[Cambridge IGCSE® Physics 0625/22, Question 4,Paper May/June, 2010]

[2]

[2]

[3]

6 Energy transformations and energy transfers

In this chapter, you will find out:


- how to identify forms of energy
- how to describe energy conversions
- about applying the principle of conservation of energy
- the meaning of energy efficiency
- S how to calculate percentage efficiency
- how to calculate potential energy and kinetic energy.

Energy for life

Crocodiles (Figure 6.1) are efficient creatures. Their jaws snap down on their prey, and there is no escape. You might imagine that a crocodile has a big appetite, but that is not so. A crocodile needs very little food. It can exist on just one-quarter of its own body weight each year. For a human being, this is equivalent to surviving on fish and chips once a week!

There are several reasons for this. It does not take much energy to lie in wait in a water-hole. The water supports your weight, and you do not have to move around a lot. Also, crocodiles (like all reptiles) are cold-blooded, so that their body temperature is close to that of their surroundings. On a cold day, they are sluggish and much more approachable. On hot days, their system is more active, and they are much more agile and dangerous. Finally, their bodies make good use of the food they consume. Unlike humans, they do not have much of a brain (which uses a lot of a human's energy supply). Instead, their energy is stored efficiently and only released when it is time to grab a snack.

In this chapter, we will look at how energy is used in various forms, and how we can use energy efficiently to avoid wasting it.

Figure 6.1 Crocodiles are cold-blooded creatures, so it is relatively safe to approach them on a cold day. On a hot day, they are much more active. Crocodiles are not big eaters, but they make very efficient use of the energy supplied by their food.

6.1 Forms of energy

Energy, and energy changes, are involved in all sorts of activities. We will look at two examples and see how we can describe them in terms of **energy**. We need to have the idea of forms of energy.

Example 1: running

At the start of a race, you are stationary, waiting for the starter's pistol. Energy is stored in your toned-up muscles, ready to be released. As you set off, the energy from your muscles gets you moving. If you are running a marathon, you will need to make use of the energy in the longer-term stores in the fatty tissues of your body.

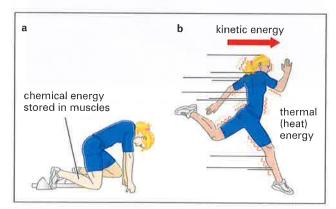
The energy changes involved are shown in Figure 6.2. Your muscles store *chemical energy*. The energy is stored by chemicals in your muscles, ready to be released at a moment's notice. Your muscles start you moving, and you then have *kinetic energy*. Running makes you hot. This tells us that some of the energy released in your muscles is wasted as *thermal (heat) energy*, rather than becoming useful kinetic energy. Fitness training helps people to reduce this waste.

Example 2: switching on a light

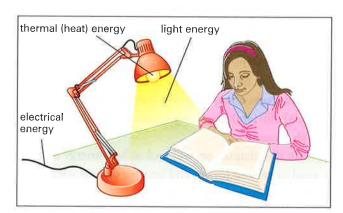
It is evening, and the daylight is fading. You switch on the light. Your electricity meter starts to turn a little faster, recording the fact that you are drawing more energy from the distant power station.

The energy changes involved are shown in Figure 6.3. Electricity is useful because it brings energy, available at the flick of a switch. We can think of the energy it

brings as *electrical energy*. In the light bulb, this energy is transformed into *light energy*. Every light bulb also produces *thermal (heat) energy*.


Naming forms of energy

The examples above highlight some of the various forms of energy. We now take a brief look at examples of all of these forms.


A moving object has **kinetic energy** (**k.e.**). The faster an object moves, the greater its k.e. We know this because we need to transfer energy to an object to get it moving, and we need to transfer more energy to get it moving faster. Also, if you stand in the path of a moving object so that it runs into you, it will move more slowly. It has transferred some of its energy to you.

If you lift an object upwards, you give it **gravitational potential energy (g.p.e.)**. The higher an object is above the ground, the greater its g.p.e. If you let the object fall, you can get the energy back again. This is exploited in many situations. The water stored behind a hydroelectric dam has g.p.e. As the water falls, it can be used to drive a turbine to generate electricity. A grandfather clock has weights that must be pulled upwards once a week. Then, as they gradually fall, they drive the pendulum to operate the clock's mechanism.

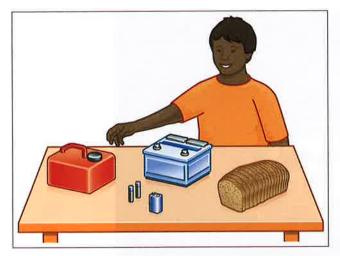

Fuels such as coal or petrol/gasoline are stores of **chemical energy**. We know that a fuel is a store of energy because, when the fuel burns, the stored energy is released, usually as heat and light. There are many other stores of chemical energy (see Figure **6.4**). As we saw above, energy is stored by chemicals in our bodies. Batteries are also stores of energy. When a battery is

Figure 6.2 a At the start of a race, the runner's muscles are stores of chemical energy. **b** As the runner starts to move, chemical energy is transformed to kinetic energy and thermal (heat) energy.

Figure 6.3 Switching on the light requires a supply of electrical energy. In the light bulb, electrical energy is transformed to light energy and thermal (heat) energy.

Figure 6.4 Some stores of chemical energy – petrol, batteries and bread. Our bodies have long-term stores of energy in the form of fatty tissues.

part of a complete circuit, the chemicals start to react with one another and an electric current flows. The current carries energy to the other components in the circuit.

An electric current is a good way of transferring energy from one place to another. It carries **electrical energy**. When the current flows through a component such as a heater, it gives up some of its energy.

A close relation of chemical energy is **nuclear energy**. Uranium is an example of a nuclear fuel, which is a store of nuclear energy. All radioactive materials are also stores of nuclear energy. In these substances, the energy is stored in the nucleus of the atoms – the tiny positively charged core of the atom. A nuclear power station is designed to release the nuclear energy stored in uranium.

If you stretch a rubber band, it becomes a store of **strain energy**. The band can give its energy to a paper pellet and send it flying across the room! Strain energy is the energy stored by an object that has been stretched or squashed in an elastic way (so that it will spring back to its original dimensions when the stretching or squashing forces are removed). For this reason, it is also known as **elastic energy**. The metal springs of a car are constantly storing and releasing elastic energy as the car travels along, so that the occupants have a smoother ride. A wind-up clock stores energy in a spring, which is the energy source needed to keep its mechanism operating.

If you heat an object so that it gets hotter, you are giving energy to its atoms. The energy stored in a hot object is called **internal energy**. We can picture the atoms of a hot object jiggling rapidly about – they have a lot of energy. This picture is developed further in Chapter 9.

If you get close to a hot object, you may feel **thermal** (**heat**) **energy** coming from it. This is energy travelling from a hotter object to a colder one. The different ways in which this can happen are described in Chapter 11.

Very hot objects glow brightly. They are giving out **light energy**. Light radiates outwards all around the hot object.

Another way in which energy can be transferred to an object's surroundings is as **sound energy**. An electric current brings electrical energy to a loudspeaker – sound energy and some thermal energy are produced (see Figure **6.5**).

Study tip

Take care not to confuse the following two forms of energy: *Internal energy* is the energy of a hot object. *Thermal energy* (also called heat energy) is the energy spreading out from a hot object.

Energy stores, energy transfers

Energy can be stored in an object, or it can be transferred from one object to another. Table 6.1 lists the forms of energy described above under two headings, 'Energy stores' and 'Energy transfers'. An energy transfer is 'energy on the move', from one place to another.

Energy stores	Energy transfers
kinetic energy	electrical energy
gravitational potential energy	thermal (heat) energy
chemical energy	light energy
nuclear energy	sound energy
strain (elastic) energy	
internal energy	

Table 6.1 Different forms of energy can be classified as stores or transfers.

Figure 6.5 At a major rock concert, giant loudspeakers pour out sound energy to the audience. Extra generators may have to be brought on to the site to act as a source of electrical energy to power the speaker systems. Much of the energy supplied is wasted as heat energy, because only a fraction of the electrical energy is transformed into sound energy.

Energy can be transferred from one object to another, or from place to place. (Remember that a 'ferry' transfers people from place to place.) Here are four different ways in which energy can be transferred:

- ◆ By a force. If you lift something, you give it gravitational potential energy you provide the force that lifts it. Alternatively, you can provide the force needed to start something moving you give it kinetic energy. When energy is transferred from one object to another by means of a force, we say that the force is **doing work**. This is discussed in detail in Chapter 8.
- By heating. We have already seen how thermal (heat) energy spreads out from hot objects. No matter how good the insulation, energy is transferred from a hot object to its cooler surroundings. This is discussed in detail in Chapter 11.
- ◆ By radiation. Light reaches us from the Sun. That is how energy is transferred from the Sun to the Earth. Some of the energy is also transferred as infrared and ultraviolet radiation. These are all forms of electromagnetic radiation (see Chapter 15).
- ◆ By electricity. An electric current is a convenient way of transferring energy from place to place. The electricity may be generated in a power station many kilometres away from where the energy is required.

Alternatively, a torch battery provides the energy needed to light a bulb. Electricity transfers the energy from the battery to the bulb. This is covered in Chapter 19.

Questions

- **6.1** What name is given to the energy of a moving object?
- **6.2** The Sun is a very hot object. Name **two** forms of energy that arrive at the Earth from the Sun.
- **6.3** What form of energy is stored by a stretched spring?
- **6.4** What do the letters g.p.e. stand for? How can an object be given g.p.e.?
- 6.5 Name a device that transforms electrical energy to sound energy. (It may also produce thermal (heat) energy.)
- **6.6** Name **three** forms of energy that are given out by a television set.
- **6.7** Look at the list of energy stores shown in Table **6.1**. For each, give an example of an object or material that stores energy in this form.

6.2 Energy conversions

When energy changes from one form to another, we say that it has been *converted* or *transformed*. We have already mentioned several examples of *energy conversions*. Now we will look at a few more and think a little about the forms of energy that are involved.

The rocket in Figure 6.6 is lifting off from the ground as it carries a new spacecraft up into space. Its energy comes from its store of fuel and oxygen. It carries tanks of liquid hydrogen. These are its store of chemical energy. When fuel burns, its store of energy is released.

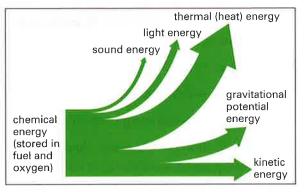

The rocket is accelerating, so we can say that its kinetic energy is increasing. It is also rising upwards, so its gravitational potential energy is increasing. In Figure 6.6, you can see light coming from the burning fuel. You can also imagine that large amounts of thermal (heat) energy and sound energy are produced.

Figure 6.6 This giant rocket uses rocket motors to lift it up into space. Each rocket motor burns about one tonne of fuel and oxygen every minute to provide the energy needed to move the rocket upwards.

This energy conversion is shown in Figure 6.7. We can also represent the conversion as an equation:

chemical energy \rightarrow k.e. + g.p.e. + thermal energy + light energy + sound energy

The clockwork radio (Figure 6.8) is a famous invention. Where people do not have ready access to batteries or mains electricity, it allows them to listen to radio broadcasts with minimal running costs. The model shown in the photograph has an additional feature: a solar cell acts as an alternative energy source.

Figure 6.7 This diagram represents the energy transformations going on as a rocket like that in Figure **6.6** accelerates upwards. Chemical energy in the fuel and oxygen is transformed into five other forms of energy.

Figure 6.8 This clockwork radio is designed for use by people who do not have a ready supply of batteries or mains electricity. It operates from two alternative energy sources: a wound-up clockwork spring, and a solar cell. Since many users live in sunny parts of the world, a solar cell is a useful feature.

The wound-up spring of the clockwork mechanism is a store of elastic (strain) energy. The radio requires electrical energy to function. As the spring unwinds, it turns a generator. The elastic energy of the unwinding spring first becomes kinetic energy of the turning mechanism, and then electrical energy carried by the current to the radio. Finally, the energy is converted to sound energy. Along the way, energy is wasted as thermal (heat) energy. This is because no generator can convert all of the kinetic energy it is supplied with into electrical energy – some becomes thermal energy. Similarly, heat is produced by the electronic circuits of the radio, and by its loudspeaker. We can represent these conversions by an equation with several steps:

elastic energy \rightarrow k.e.

- → electrical energy + thermal energy
- → sound energy + thermal energy

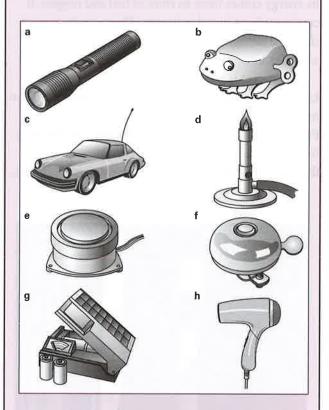
The solar cell converts light energy directly into electrical energy. Again, some energy is wasted as heat. The whole conversion then becomes:

light energy \rightarrow electrical energy + thermal energy \rightarrow sound energy + thermal energy

Study tip

The two most common forms of waste energy are thermal energy and sound energy.

Question


- **6.8** What energy conversions are going on in the following? In each case, write an equation to represent the conversion.
 - a Coal is burned to heat a room and to provide a supply of hot water.
 - **b** A student uses an electric lamp while she is doing her homework.
 - **c** A hairdryer is connected to the mains electricity supply. It blows hot air at the user's wet hair. It whirrs as it does so.

Activity 6.1 Energy conversions

Skills

AO3.3 Make and record observations, measurements and

Examine some devices that convert energy from one form to another. Some ideas are shown.

- 1 Examine each of the devices you are provided with. State what energy conversions are going on in the device.
- **2** Compare your answers with the answers of other members of the class.

6.3 Conservation of energy

When energy is transformed from one form to another, it is often the case that some of the energy ends up in a form that we do not want. The energy transformations in a light bulb were represented earlier in Figure 6.3. The bulb produces light energy, which we do want, but also thermal (heat) energy, which we do not want.

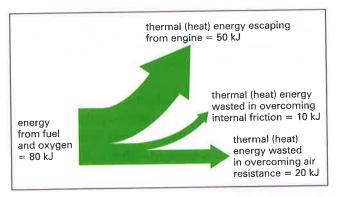

A rocket motor (see Figures 6.6 and 6.7) transforms chemical energy into two forms that we do want (k.e. and g.p.e.) and three that we do not want (heat, light and sound).

Figure 6.9 shows an energy diagram for a car, driving along a flat road. Its source of energy is the petrol/diesel/gasoline it burns, and the numbers show that the fuel supplies 80 kJ (kilojoules) every second. Some thermal energy escapes from the hot engine and in the exhaust gases. Some energy is wasted as heat produced by friction within the workings of the car. The rest is used in overcoming air resistance, another form of friction, so that the air is warmer after the car has passed through it.

All of the energy supplied by the car's fuel ends up as thermal energy. If you add up the different amounts of thermal energy in Figure 6.9, you will see that they come to 80 kJ. This is an example of a very important idea, the **principle of conservation of energy**:

In any energy conversion, the total amount of energy before and after the conversion is constant.

This tells us something very important about energy: it cannot be created or destroyed. The total amount of energy is constant. If we measure or calculate the amount of energy before a conversion, and again afterwards, we will always get the same result. If we

Figure 6.9 An energy diagram for a car, showing the energy converted by the car each second.

find any difference, we must look for places where energy may be entering or escaping unnoticed.

Keeping an eye on the amounts of energy is rather like a form of book-keeping or accounting. Energy is like money: the amounts entering a system must equal the amounts leaving it, or stored within it.

Question •

- **6.9** A light bulb is supplied with 100 J of energy each second.
 - **a** How many joules of energy leave the bulb each second in the form of heat and light?
 - **b** If 10 J of energy leave the lamp each second in the form of light, how many joules leave each second in the form of heat?

Energy efficiency

Energy is expensive, and we do not want to waste it. Using more energy than necessary increases the damage we do to the environment, so it is important to avoid waste. Figure 6.10 shows a diagram that represents energy flows in the whole of the UK in a typical year (year 2000). Most of the energy flowing in to the UK comes from fuels, particularly coal, oil and gas. Energy is wasted in two general ways: when it is converted (transformed) into electricity, and when it is used (for example, in light bulbs).

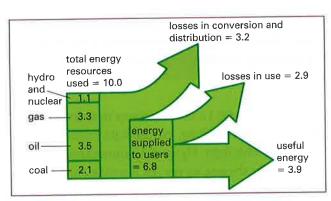


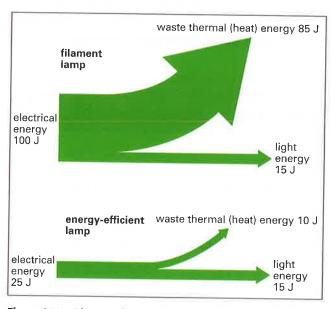
Figure 6.10 A diagram showing energy flows in the UK in a typical year, 2000. (All numbers are ×10¹⁸ J.) A large proportion of the energy supplied by fuels is wasted in conversion processes and in its final use. Some of this waste is inevitable, but better insulation and more efficient machines could reduce the waste and environmental damage, and save money.

Most wasted energy ends up as thermal (heat) energy. There are two main reasons for this:

- ♦ When fuels are burned (perhaps to generate electricity, or to drive a car), heat is produced as an intermediate step. Hot things readily lose energy to their surroundings, even if they are well insulated. Also, engines and boilers have to lose heat as part of the way they operate: power stations produce warm cooling water; and cars produce hot exhaust gases.
- Friction is very often a problem when things are moving. Lubrication can help to reduce friction, and a streamlined design can reduce air resistance. But it is impossible to eliminate friction entirely from machines with moving parts. Friction generates heat.

Another common form of wasted energy is sound. Noisy machinery, loud car engines and so on are all wasting energy. However, loud noises do not contain very much energy, so there is little to be gained (in terms of energy) by reducing noise. Waste energy in the form of heat and sound is sometimes referred to as low-grade energy.

Making better use of energy


It is important to make good use of the energy resources available to us. This is because energy is expensive, supplies are often limited, and our use of energy can damage the environment. So we must use resources efficiently. Here is what we mean by **efficiency**:

The efficiency of an energy conversion is the fraction of the energy that ends up in the desired form.

Figures 6.11 and 6.12 show one way to make more efficient use of electricity. We use light bulbs to provide us with light. Figure 6.11 shows two types of light bulb: the one on the left is a filament lamp, and the other is an energy-efficient lamp. Figure 6.12 shows the energy they use each second. The diagram shows that each of the two bulbs produces the same amount of light energy. However, because it wastes much less energy as heat, the energy-efficient lamp requires a much smaller input of electrical energy.

Figure 6.11 Each of these two light bulbs provides the same amount of light.

Figure 6.12 Diagram showing energy transformations in light bulbs of the types shown in Figure **6.11**. The energy-efficient lamp wastes much less energy as heat.

Table **6.2** shows the typical efficiencies for some important devices. You can see that even the most modern gas-fired power station is only 50% efficient. Half of the energy it is supplied with is wasted.

Study tip

The word 'efficiency' is often used in everyday life, but often it is used to mean 'quickly', which is not the same as the scientific meaning.

Device	Typical efficiency
electric heater	100%
large electric motor	90%
washing machine motor	70%
gas-fired power station	50%
diesel engine	40%
car petrol engine	30%
steam locomotive	10%

Table 6.2 Energy efficiencies. Most devices are less than 100% efficient because they produce waste heat. An electric heater is 100% efficient because all of the electrical energy supplied is transformed to heat. There is no problem about waste here!

Questions

- **6.10 a** What is the most common form of waste energy?
 - **b** Name another form in which energy is often wasted.
- **6.11** Why is it important not to waste energy? Give **three** reasons.

Energy becoming dissipated

We have seen that energy changes are usually less than 100% efficient. Energy escapes and is wasted as heat. This means that objects and their surroundings are warmed, and it is very difficult to get that energy back. We say that energy tends to be dissipated (spread out) during an energy change.

Think about, for example, a battery in a torch. It is a convenient, compact store of energy. Once it has been used, some of its energy has been changed to light which is then absorbed by the surfaces it falls on, causing them to warm slightly. The rest of the energy is dissipated as heat in the components of the electric circuit in the torch.

Calculating efficiency

You can see from Table **6.2** that efficiency is often given as a percentage. We can calculate the percentage efficiency of an energy change as follows:

$$efficiency = \frac{useful\ energy\ output}{energy\ input} \times 100\%$$

When the filament lamp shown in Figure **6.11** is supplied with 100 J of electrical energy, it produces 15 J of useful light energy. Its efficiency is thus:

efficiency of filament lamp =
$$\frac{15}{100} \times 100\% = 15\%$$

Questions •

- **6.12** Calculate the efficiency of the energy-efficient lamp from the data shown in Figure **6.12**.
- **6.13** A coal-fired power station produces 100 MJ of electrical energy when it is supplied with 400 MJ of energy from its fuel. Calculate its efficiency.
- **6.14** A lamp is 10% efficient. How much electrical energy must be supplied to the lamp each second if it produces 20 J of light energy per second?

6.4 Energy calculations

Energy is not simply an idea, it is also a quantity that we can calculate.

Gravitational potential energy (g.p.e.)

Mountaineering on the Moon should be easy (see Figure 6.13). The Moon's gravity is much weaker than the Earth's, because the Moon's mass is only one-eightieth of the Earth's. This means that the weight of an astronaut on the Moon is a fraction of his or her weight on the Earth. In principle, it is possible to jump

Figure 6.13 Astronauts on the Moon. The Moon's gravity is one-sixth that of the Earth. Experiments on the Moon have shown that a golf ball can be hit much farther than on Earth. This is because it travels a much greater distance horizontally before gravity pulls it back to the ground.

six times as high on the Moon. Unfortunately, because an astronaut has to carry an oxygen supply and wear a cumbersome suit, this is not possible.

Earlier, we saw that an object's g.p.e. depends on its height above the ground. The higher it is, the greater its g.p.e. If you lift an object upwards, you provide the force needed to increase its g.p.e. The heavier the object, the greater the force needed to lift it, and hence the greater its g.p.e.

This suggests that an object's gravitational potential energy (g.p.e.) depends on two factors:

- ◆ the object's weight mg the greater its weight, the greater its g.p.e.
- the object's height h above ground level the greater its height, the greater its g.p.e.

This is illustrated in Figure 6.14. From the numbers in the diagram, you can see that g.p.e. is simply calculated by multiplying weight by height. (Here, we are assuming that an object's g.p.e. is zero when it is at ground level.) We can write this as an equation for g.p.e.:

gravitational potential energy = weight × height $\text{g.p.e.} = mg \times h$

Worked example 6.1

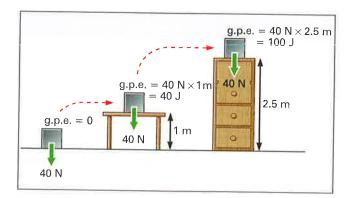
An athlete of mass 50 kg runs up a hill. The foot of the hill is 400 m above sea-level. The summit is 1200 m above sea-level. By how much does the athlete's g.p.e. increase? (Acceleration due to gravity $g = 10 \text{ m/s}^2$.)

Step 1: Assume that g.p.e. is zero at the foot of the hill. Calculate the increase in height.

 $h = 1200 \,\mathrm{m} - 400 \,\mathrm{m} = 800 \,\mathrm{m}$

Step 2: Write down the equation for g.p.e., substitute values and solve.

g.p.e. = weight \times height


 $= mg \times h$

 $= 50 \,\mathrm{kg} \times 10 \,\mathrm{m/s^2} \times 800 \,\mathrm{m}$

=400000 J

 $= 400 \, kJ$

So the athlete's g.p.e. increases by 400 kJ.

Figure 6.14 The gravitational potential energy of an object increases as it is lifted higher. The greater its weight, the greater its g.p.e.

A note on height

We have to be careful when measuring or calculating the change in an object's height.

First, we have to consider the *vertical* height through which it moves. A train may travel 1 km up a long and gentle slope, but its vertical height may only increase by 10 m. A satellite may travel around the Earth in a circular orbit. It stays at a constant distance from the centre of the Earth, and so its height does not change. Its g.p.e. is constant.

Second, it is the change in height of the object's centre of gravity that we must consider. This is illustrated by the pole-vaulter shown in Figure 6.15. As he jumps, he must try to increase his g.p.e. enough to get over the bar. In fact, by curving his body, he passes over the bar but his centre of gravity may pass under it.

Figure 6.15 This pole-vaulter adopts a curved posture to get over the bar. He cannot increase his g.p.e. enough to get his whole body above the level of the bar. His centre of gravity may even pass under the bar, so that at no time is his body entirely above the bar.

Kinetic energy (k.e.)

It takes energy to make things move. You transfer energy to a ball when you throw it or hit it. A car uses energy from its fuel to get it moving. Elastic energy stored in a stretched piece of rubber is needed to fire a pellet from a catapult. So a moving object is a store of energy. This energy is known as kinetic energy (k.e.).

We often make use of an object's kinetic energy. To do this, we must slow it down. For example, moving air turns a wind turbine. This slows down the air, reducing its k.e. The energy extracted can be used to turn a generator to produce electricity.

This suggests that the kinetic energy of an object depends on two factors:

- the object's mass m the greater the mass, the greater its k.e.
- the object's speed ν the greater the speed, the greater its k.e.

These are combined in a formula for k.e.:

kinetic energy =
$$\frac{1}{2} \times \text{mass} \times \text{speed}^2$$

k.e. = $\frac{1}{2} mv^2$

Worked example **6.2** shows how to use the formula to calculate the k.e. of a moving object. Note also that kinetic energy (like all forms of energy) is a scalar quantity, despite the fact that it involves v. It is best to think of v here as *speed* rather than velocity.

Comments on Worked example 6.2

It is worth looking at Worked example 6.2 in detail, since it illustrates several important points.

When calculating k.e. using $\frac{1}{2}mv^2$, take care! Only the speed is squared. Using a calculator, start by squaring the speed. Then multiply by the mass, and finally divide by 2.

When the van's speed doubles from 10 m/s to 20 m/s, its k.e. increases from 100 kJ to 400 kJ. In other words, when its speed increases by a factor of 2, its k.e. increases by a factor of 4. This is because k.e. depends on speed squared. If the speed trebled (increased by a factor of 3), the k.e. would increase by a factor of 9 (see Figure 6.16).

Worked example 6.2

A van of mass 2000 kg is travelling at 10 m/s. Calculate its kinetic energy. If its speed increases to 20 m/s, by how much does its kinetic energy increase?

Step 1: Calculate the van's k.e. at 10 m/s.

k.e. =
$$\frac{1}{2}mv^2$$

= $\frac{1}{2} \times 2000 \text{ kg} \times (10 \text{ m/s})^2$
= 100000 J
= 100 kJ

Step 2: Calculate the van's k.e. at 20 m/s.

k.e. =
$$\frac{1}{2} mv^2$$

= $\frac{1}{2} \times 2000 \text{ kg} \times (20 \text{ m/s})^2$
= 400000 J
= 400 kJ

Step 3: Calculate the change in the van's k.e.

change in k.e. =
$$400 \,\text{kJ} - 100 \,\text{kJ}$$

= $300 \,\text{kJ}$

So the van's k.e. increases by $300 \, kJ$ when it speeds up from $10 \, m/s$ to $20 \, m/s$.

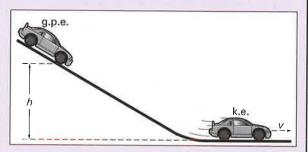
When the van starts moving from rest and speeds up to 10 m/s, its k.e. increases from 0 to 100 kJ. When its speed increases by the same amount again, from 10 m/s to 20 m/s, its k.e. increases by 300 kJ, three times as much. It takes a lot more energy to increase your speed when you are already moving quickly. That is why a car's fuel consumption starts to increase rapidly when the driver tries to accelerate in the fast lane of a motorway.

Study tip

Although the formula for k.e. includes v, the object's velocity, k.e. is not a vector quantity – it does not have a direction. Think of v as speed, not velocity.

Activity 6.2 Running downhill

Skills


AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

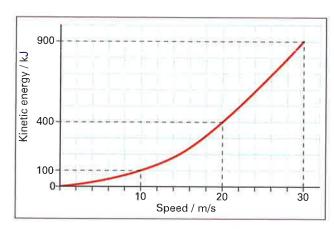
AO3.4 Interpret and evaluate experimental observations and data

When a toy car runs downhill, g.p.e. changes to k.e. You can investigate this energy change.

At the top of the hill, the car has g.p.e. (gravitational potential energy). As it runs downhill, g.p.e. changes to k.e. (kinetic energy).

If you measure the height *h* of the car at the top of the slope, you can calculate its g.p.e.:

$$g.p.e. = mgh$$


If you measure the speed v of the car at the foot of the slope, you can calculate its k.e.:

$$k.e. = \frac{1}{2}mv^2$$

Your task is to test the following idea:

As it runs down the slope, the car's g.p.e. is *entirely* converted to k.e.

- 1 Start by discussing whether you think this idea is likely to be true.
- 2 Discuss how you can test the idea. What will you have to measure? What factors can you vary in the course of the experiment?
- 3 Make your measurements and draw a conclusion.

Figure 6.16 The faster the van travels, the greater its kinetic energy – see Worked example **6.2**. Double the speed means four times the kinetic energy, because k.e. depends on speed squared. The graph shows that k.e. increases more and more rapidly as the van's speed increases.

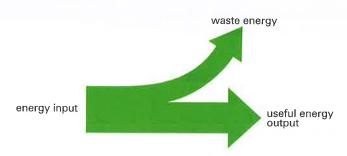
Questions

- **6.15** In the following examples, is the object's g.p.e. increasing, decreasing or remaining constant?
 - **a** An apple falls from a tree.
 - **b** An aircraft flies horizontally at a height of 9000 m.
 - c A sky-rocket is fired into the sky.
- **6.16** A girl of weight 500 N climbs on top of a 2.0 m high wall. By how much does her g.p.e. increase?
- **6.17** A stone of weight 1.0 N falls downwards. Its g.p.e. decreases by 100 J. How far has it fallen?
- **6.18** What does ν represent in the formula k.e. = $\frac{1}{2}mv^2$?
- **6.19** How much k.e. is stored by a 1.0 kg ball moving at 1.0 m/s?
- **6.20** A runner of mass 80 kg is moving at 8.0 m/s. Calculate her kinetic energy.
- **6.21** Which has more k.e., a 2.0 g bee flying at 1.0 m/s, or a 1.0 g wasp flying at 2.0 m/s?

Summary

You should know:

- about forms of energy and energy conversions
- the principle of conservation of energy
- what is meant by energy efficiency
- how to calculate energy efficiency
- ♦ how to calculate gravitational potential energy and kinetic energy.


End-of-chapter questions

1 Copy and complete the table by giving the name of each form of energy in the first column.

Name	Description
	energy of a moving object
	energy stored in a hot object
	energy stored in a fuel
	energy that we can see
	energy that we can hear
	energy stored in a squashed spring
	energy carried by an electric current
	energy stored in the nucleus of an atom
	energy escaping from a hot object

- 2 Energy can be changed from one form to another. It can be transferred from one object to another. Copy and complete the following sentences.
 - **a** When energy changes from one form to another, some of the energy may be wasted, often in the form of
 - **b** The tells us the fraction of energy which is wasted.
 - c The total amount of energy does not change. This is known as the principle of of energy.
- 3 Give the equations used to calculate the following quantities; and explain the meanings of the symbols used for each.
 - a kinetic energy
 - **b** gravitational potential energy

4 The diagram represents an energy change.

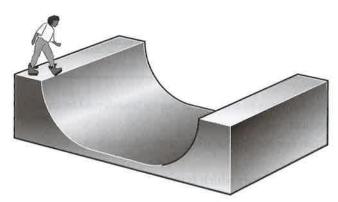
Copy and complete the following two word equations for this energy change:

- a waste energy =
- **b** efficiency =
- 5 What are the energy conversions in each of the following? Write an equation for each.
 - **a** A glow-worm is an insect that glows in the dark. Chemicals in its body react together to produce light and heat.
 - **b** An electric motor is used to start a computer's disk drive spinning round. [2]

[2]

[2]

[2]


[2]

[2]

[2]

[2]

- c A wind turbine spins and generates electricity.
- **d** Friction in a car's brakes slows it down.
- 6 A light bulb is supplied with 100 J of electrical energy each second. It produces 7.0 J of light energy and 93.0 J of thermal (heat) energy. Explain how this shows that energy is conserved. [3]
- 7 The girl on the skate ramp roller-skates down one side of the slope and up the opposite side. She cannot quite reach the top of the slope, level with her starting position.

- a What energy conversion is taking place as the girl moves downwards?
- b What energy conversion is taking place as the girl moves back upwards?
- c Explain why the girl cannot reach the top of the slope.
- **d** Suggest how the girl could reach the top of the slope.

8 Low-energy light bulbs are designed to save energy, but do they also save money? An individual low-energy bulb is more expensive than the filament bulb it replaces. However, it lasts for much longer, typically 10 000 hours. Some typical costs in pence (p) are shown in the table.

	Low-energy bulb	Filament bulb
cost of one bulb	400c	50c
number of bulbs required for 10 000 hours	1	10
cost of electricity for 1 hour	0.2c	1.0c
total cost of electricity for 10 000 hours		18666898
total cost of bulbs and electricity	525343	*****

- a Copy the table and complete the second column to calculate the total cost of using a low-energy bulb for 10 000 hours.
- [2]
- **b** Complete the third column to calculate the cost of using filament bulbs instead of a single low-energy bulb.
- [2]

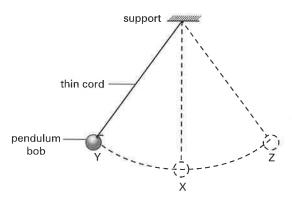
c How much money is saved by using a low-energy bulb?

[2]

d Suggest two reasons that people might have for not using low-energy bulbs.

- [2]
- 9 A power station burns rubbish to generate electricity. It also supplies hot water to nearby offices and shops.

- a What **two** useful energy forms are produced? [2]
- **b** What waste energy is produced? [1]
- c Is this an efficient use of energy? Explain your answer using information from the diagram. [2]


10 The diagram shows an idea for a perpetual motion machine. The car runs on electricity. As it moves along, the air moving past the car turns the generator on the roof. This generates the electricity needed to power the car.

- a Explain the energy transformations that are going on here.
- **b** Explain why this idea will not work in practice.
- An astronaut on the Moon has a mass (including his spacesuit and equipment) of $180\,\mathrm{kg}$. The acceleration due to gravity on the Moon's surface is $1.6\,\mathrm{m/s^2}$.
 - a Calculate the astronaut's weight on the Moon. [3]

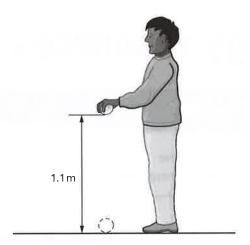
The astronaut climbs 100 m to the top of a crater.

- **b** By how much does his gravitational potential energy (g.p.e.) change? [3]
- c Does his g.p.e. increase or decrease?
- 12 A simple pendulum starts with its bob at position X, shown in the diagram. The bob is pulled aside to Y and then released. It swings from Y to Z and back to Y.

Copy the following sentences, and write suitable words in the gaps. Ignore air resistance.

[5]

[2]


[2]

[1]

In order to move the bob from X to Y, has to be done on it and its energy increases because it is raised further from the ground. As it moves towards X, some of this energy is converted into energy. Throughout the swing from Y to Z and back to Y, the total energy is Energy is measured in units called

[Cambridge IGCSE® Physics 0625/22, Question 4, October/November, 2010]

13 A boy drops a ball of mass 0.50 kg. The ball falls a distance of 1.1 m, as shown in the diagram. Ignore air resistance throughout this question.

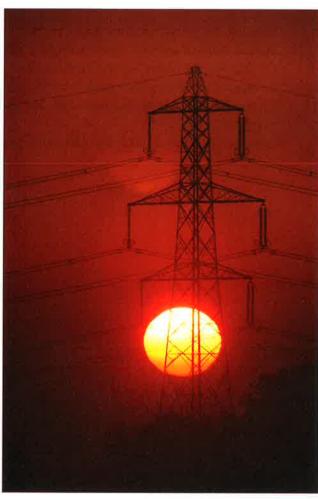
- a Calculate the decrease in gravitational potential energy of the ball as it falls through the 1.1 m. [2]
- ${f b}$ The ball bounces and only rises to a height of 0.80 m.
 - i Calculate the energy lost during the bounce. [1]
 - ii Suggest one reason why energy is lost during the bounce. [1]
- **c** On another occasion, the boy **throws** the ball down from a height of 1.1 m, giving it an initial kinetic energy of 9.0 J.
 - Calculate the speed at which the ball hits the ground. [3]

[Cambridge IGCSE® Physics 0625/33, Question 6, October/November, 2010]

Energy resources

In this chapter, you will find out:

- about the different energy resources we use
- how we rely on the Sun for most of our energy resources.


7.1 The energy we use

Here on Earth, we rely on the Sun for most of the energy we use. The Sun is a fairly average star, 150 million kilometres away. The heat and light we receive from it have taken about eight minutes to travel through empty space to get here. Plants absorb this energy in the process of photosynthesis, and animals are kept warm by it.

The Earth is at a convenient distance from the Sun for living organisms. The Sun's rays are strong enough, but not too strong. The Earth's average temperature is about 15 °C, which is suitable for life. If we were closer to the Sun, we might be intolerably hot like Venus, where the average surface temperature is over 400 °C. Further out, things are colder. Saturn is roughly ten times as far from the Sun, so the Sun in the sky looks one-tenth of the diameter that we see it, and its radiation has only one-hundredth of the intensity. Saturn's surface temperature is about -180 °C.

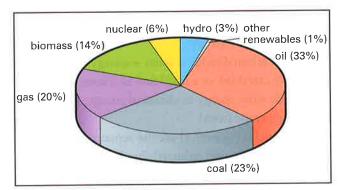

Most of the energy we use comes from the Sun, but only a very little is used directly from the Sun. On a cold but sunny morning, you might sit in the sunshine to warm your body. Your house might be designed to collect warmth from the Sun's rays, perhaps by having larger windows on the sunny side. However, most of the energy we use comes only indirectly from the Sun. It must be converted into a more useful form, such as electricity (Figure 7.1).

Figure 7.2 is a chart showing the different fuels that contribute to the world's energy supplies. This chart reflects patterns of energy consumption in the early years of the 21st century. Many people today

Figure 7.1 We use energy from the Sun in many different ways – for example, for producing electricity.

live in industrialised countries and consume large amounts of energy, particularly from fossil fuels (coal, oil and gas). People living in less-developed countries

Figure 7.2 World energy use, by fuel. This chart shows the contributions made by different fuels to energy consumption by people in 2006, across the world. Three-quarters of all energy is from fossil fuels.

consume far less energy – mostly they use biomass fuels, particularly wood. A thousand years ago, the chart would have looked very different. Fossil fuel consumption was much less important then. Most people relied on burning wood to supply their energy requirements. We will now look at these groups of fuels in turn.

Energy direct from the Sun

In hot, sunny countries, **solar panels** are used to collect thermal (heat) and light energy from the Sun. The Sun's rays fall on a large solar panel, on the roof of a house, for example. This absorbs the energy of the rays, and water inside the panel heats up. This provides hot water for washing. It can also be pumped round the house, through radiators, to provide a cheap form of central heating.

We can also make electricity directly from sunlight (Figure 7.3). The Sun's rays shine on a large array of **solar cells** (also known as a **photocells**). The energy of the rays is absorbed, and electricity is produced. As this technology becomes cheaper, it is finding more and more uses. It is useful in remote locations – for example, for running a refrigerator that stores medicines in central Africa, or for powering roadside emergency phones in desert regions such as the Australian outback. Solar cells have also been used extensively for powering spacecraft. Ideally, a solar cell is connected to a rechargeable battery, which stores the energy collected, so that it can be available during the hours of darkness.

Figure 7.3 This array of solar cells provides electricity for a water pump in a Kenyan village.

Figure 7.4 These giant turbines are part of a wind farm at Xinjiang in China. They produce as much electricity as a medium-sized coal-fired power station.

Wind and wave power

Wind and waves are also caused by the effects of the Sun. The Sun heats some parts of the atmosphere more than others. Heated air expands and starts to move around – this is a convection current (see Chapter 11). This is the origin of winds. Most of the energy of winds is given up to the sea as waves are formed by friction between wind and water. There are many technologies for extracting energy from the wind. Windmills for grinding and pumping are traditional, and modern wind turbines can generate electricity (see Figure 7.4).

Wave technology is trickier. The up-and-down motion of waves must be used to spin a turbine, which then turns a generator. This is tricky to achieve, and rough seas are a hazardous place to work. On calm days, the system produces no power.

Questions

- **7.1** Explain why wind and wave power could not be relied on to provide a country's entire electricity supply.
- **7.2** A solar cell (photocell) produces electricity when the sun shines. What energy conversion is going on here?
- **7.3** When a wave travels across the sea, the water moves up and down. What **two** forms of energy does a wave have?

Biomass fuels

For many people in the world, wood is the most important fuel. It warms their homes and provides the heat necessary for cooking their food. Wood is made by trees and shrubs. It stores energy that the plant has captured from sunlight in the process of photosynthesis. When we burn wood, we are releasing energy that came from the Sun in the recent past, perhaps ten or a hundred years ago.

Wood is just one example of a biomass fuel. Others include animal dung and biogas, generated by rotting vegetable matter. These can be very important fuels in societies where most people live by farming. As you can see from Figure 7.2, biomass fuels account for about one-seventh of all energy consumption in the world. This figure can only be a rough estimate, because no-one keeps track of all the wood consumed as fuel. However, we can say that this segment of the chart represents the energy consumption of about three-quarters of the world's population. The remaining one-quarter (who live in developed, industrial nations) consume roughly six times as much.

Fossil fuels

Oil, coal and gas are all examples of **fossil fuels**. These are usually hydrocarbons (compounds of hydrogen and carbon). When they are burned, they combine with oxygen from the air. In this process, the carbon becomes carbon dioxide. The hydrogen becomes 'hydrogen oxide', which we usually call water. Energy is released.

We can write this as an equation:

hydrocarbon + oxygen

→ carbon dioxide + water + energy Hence, we can think of a fossil fuel as a store of energy. Fossil fuels store energy as chemical energy. Where has this energy come from?

Fossil fuels (Figure 7.5) are the remains of organisms (plants and animals) that lived in the past. Many of the Earth's coal reserves, for example, formed from trees that lived in the Carboniferous era, between 286 and 360 million years ago. ('Carboniferous' means 'coal-producing'.) These trees captured sunlight by photosynthesis, they grew and eventually they died. Their trunks fell into the

Figure 7.5 Coal is a fossil fuel. A fossil is any living material that has been preserved for a long time. Usually, its chemical composition changes during the process. Coal sometimes, as here, shows evidence of the plant material from which it formed. Sometimes you can see fossilised creatures that lived in the swamps of the Carboniferous era. These creatures died along with the trees that eventually became coal.

swampy ground, but they did not rot completely, because there was insufficient oxygen.

As material built up on top of these ancient trees, the pressure on them increased. Eventually, millions of years of compression turned them into underground reserves of coal (see Figure 7.5). Today, when we burn coal, the light that we see and the warmth that we feel have their origins in the sunlight trapped by trees hundreds of millions of years ago.

Oil and gas are usually found together. They are formed in a similar way to coal, but from the remains of tiny shrimp-like creatures called microplankton that lived in the oceans. The oilfields of the Persian Gulf, North Africa and the Gulf of Mexico, which contain half of the world's known oil reserves, all formed in the Cretaceous era, 75 to 120 million years ago.

Questions

- 7.4 a Name three fossil fuels.
 - b Name three non-fossil fuels.
- **7.5** What energy conversion is happening when charcoal is used as the fuel for a barbecue?

Nuclear fuels

Nuclear power was developed in the second half of the 20th century. It is a very demanding technology, which requires very strict controls, because of the serious damage that can be caused by an accident.

The fuel for a nuclear power station (Figure 7.6) is usually uranium, sometimes plutonium. These are radioactive materials. Inside a nuclear reactor, their radioactive decay is speeded up so that the energy they store is released much more quickly. This is the process of **nuclear fission**.

Uranium is a very concentrated store of energy in the form of **nuclear energy**. A typical nuclear power station will receive about one truckload of new fuel each week. Coal is less concentrated. A similar coalfired power station is likely to need a whole trainload of coal every hour. A wind farm capable of generating electricity at the same rate would cover a large area of ground – perhaps 20 square kilometres.

In some countries that have few other resources for generating electricity, nuclear power provides a lot of

Figure 7.6 This nuclear power station generates electricity. Its fuel is uranium. As the fuel is used up, highly radioactive waste products are produced. These have to be dealt with very carefully to avoid harm to the surroundings. Here, checks are being carried out to ensure that the level of radioactive materials near the power station is safe.

energy. In France, for example, nuclear power stations generate three-quarters of the country's electricity. Excess production is exported to neighbouring countries, including Spain, Switzerland and the UK.

Nuclear fuel is a relatively cheap, concentrated energy resource. However, nuclear power has proved to be expensive because of the initial cost of building the power stations, and the costs of disposing of the radioactive spent fuel and decommissioning the stations at the end of their working lives.

Water power

One of the smallest contributions to the chart in Figure 7.2 is water or hydroelectric power. For centuries, people have used the kinetic energy of moving water to turn water-wheels, which then drive machinery of all sorts – for example, to grind corn and other crops, pump water and weave textiles. Today, water power's biggest contribution is in the form of hydroelectricity (see Figure 7.7). Water stored behind a dam is released to turn turbines, which make generators spin. This is a very safe, clean and reliable way of producing electricity, but it is not without its problems. A new reservoir floods land that might otherwise have been used for hunting or farming. People may be made homeless, and wildlife habitats destroyed.

Figure 7.7 The giant Itaipú Dam on the Paraná River in South America generates electricity for Brazil and Paraguay.

Geothermal energy

The interior of the Earth is hot. This would be a useful source of energy – if we could get at it! People do make use of this **geothermal energy** where hot rocks are found at a shallow depth below the Earth's surface. (These rocks are hot because of the presence of radioactive substances inside the Earth.) To make use of this energy, water is pumped down into the rocks, where it boils. High-pressure steam returns to the surface, where it can be used to generate electricity.

Suitable hot underground rocks are usually found in places where there are active volcanoes. Iceland, for example, has several geothermal power stations. These also supply hot water to heat nearby homes and buildings.

Study tip

Wave energy, wind energy and so on are not forms of energy like those described in Chapter 6. They are energy resources and their names are simply descriptions of them.

Question •

7.6 What energy conversion happens when a nuclear power station uses uranium fuel to produce electricity?

Renewables and non-renewables

Figure 7.2 showed that most of the energy supplies we use are fossil fuels – coal, oil and gas. There are limited reserves of these, so that, if we continue to use them, they will one day run out. They are described as **non-renewables**. Once used, they are gone for ever.

Other sources of energy, such as wind, solar and biomass, are described as **renewables**. This is because, when we use them, they will soon be replaced. The wind will blow again, the sun will shine again – and, after harvesting a biomass crop, we can grow another.

Ideally, we should develop an 'energy economy' based on renewables. Then we would not have to worry about supplies that will run out. We would also avoid the problems of global warming and climate change.

Comparing energy sources

We use fossil fuels a lot because they represent concentrated sources of energy. A modern gas-fired power station might occupy the space of a football ground and supply a town of 100 000 people. To replace it with a wind farm might require 50 or more wind turbines spread over an area of several square kilometres – the wind is a dilute source of energy.

This illustrates some of the ideas that we use when comparing different energy sources. If you look back through this chapter, you will find many comments about different energy sources. Each has its advantages and disadvantages. We need to think about the following factors:

- ◆ Cost. We should separate initial costs from running costs. A solar cell is expensive to buy but there are no costs for fuels sunlight is free!
- Reliability. Is the energy supply constantly available?
 The wind is variable, so wind power is unreliable.
 Wars and trade disputes can interrupt fuel supplies.
- ◆ *Scale.* As discussed above, a fossil-fuel power station can be compact and still supply a large population. It would take several square metres of solar cells to supply a small household.
- Environmental impact. The use of fossil fuels leads to climate change. A hydroelectricity dam may flood useful farmland. Every energy source has some effect on the environment.

Question

- **7.7** Explain whether the following energy sources are renewable or non-renewable:
 - a uranium-fuelled nuclear power
 - b wave power.

7.2 Energy from the Sun

Most of the energy we use can be traced back to the Sun. We have seen the following in the previous section:

- ◆ Fossil fuels are stores of energy that came from the Sun millions of years ago.
- Radiation (light and heat) from the Sun can be absorbed by solar panels to provide hot water. Sunlight can also be absorbed by arrays of solar cells (photocells) to generate electricity. In some countries, you may see these on the roofs of houses.
- ◆ The wind is caused when air is heated by the Sun. Warm air rises; cool air flows in to replace it. This moving air can be used to generate electricity using wind turbines.
- ◆ Most hydroelectric power comes ultimately from the Sun. The Sun's rays cause water to evaporate from the oceans and land surface. This water vapour in the atmosphere eventually forms clouds at high altitudes. Rain falls on high ground, and can then be trapped behind a dam. This is the familiar water cycle. Without energy from the Sun, there would be no water cycle and much less hydroelectric power.

However, we make use of a small amount of energy that does not come from sunlight. Here are three examples:

◆ A small amount of hydroelectric power does not depend on the Sun's energy. Instead, it is generated from the tides. The Moon and the Sun both contribute to the oceans' tides. Their gravitational pull causes the level of the ocean's surface to rise and fall every twelve-and-a-bit hours. At high tide, water can be trapped behind a dam. Later, at lower tides, it can be released to drive turbines and generators. Because this depends on gravity, and not the Sun's heat and light, we can rely on tidal power even at night and when the sun is hidden by the clouds.

- ◆ Nuclear power makes use of nuclear fuels mostly uranium mined from underground. Uranium is a slightly radioactive element, which has been in the ground ever since the Earth formed, together with the rest of the solar system, 4.5 billion years ago. So uranium did not get its energy from the Sun.
- ◆ Geothermal energy also depends on the presence of radioactive substances inside the Earth. These have been there since the Earth formed; they have been continuously releasing their store of energy ever since.

The source of the Sun's energy

The Sun releases vast amounts of energy, but it is not burning fuel in the same way as we have seen for fossil fuels. The Sun consists largely of hydrogen, but there is no oxygen to burn this gas. Instead, energy is released in the Sun by the process of **nuclear fusion**. In nuclear fusion, two energetic hydrogen atoms collide and fuse (join up) to form an atom of helium.

Nuclear fusion requires very high temperatures and pressures. The temperature inside the Sun is close to 15 million degrees. The pressure is also very high, so that hydrogen atoms are forced very close together, allowing them to fuse.

Scientists and engineers would like to be able to make fusion happen in a similar way here on Earth. Experimental reactors have been built, but it is very tricky to create the necessary conditions for fusion to happen in a controlled way. Perhaps, one day, fusion will prove a safe, clean way of producing a reliable electricity supply.

Study tip

Do not confuse 'fission' and 'fusion'. It can help to remember that a fissure is where a rock has split in two.

Question =

7.8 Name **three** energy resources for which the original energy source is **not** radiation from the Sun.

Summary

You should know:

- that energy comes from the Sun
- about renewable and non-renewable energy resources
- that nuclear fusion occurs in the Sun.

End-of-chapter questions

		_	acstions					
1	Copy ar	nd complet	te the sentences th	nat follow, filling in	n the gaps with words	from the list belo	ow:	
	wind	Sun	electricity	resource	non-renewable	fossil fuels	renewable	
	b Mostc Ad Coal	t of the end	ergy we use come resource is natura are o	s originally from tally replaced after examples of		es. ate		
2	the sente	ences belo gy is releas	w and use these ty sed in the Sun by	wo terms to comp	evolve changes in the relete them.			
3	a biom	ass fuel, sı	ollowing energy re ach as wood a hydroelectric p		nergy from the Sun:			[2] [3]
4	themselva Explaprovib Sugge	res are expain why so ding dome est one oth	ensive to produce lar cells are a suita estic electricity to aer situation in wh	e. able choice for por consumers in a ci	pecause, although sund wering a spacecraft bu ty such as London, Du uld be a good choice, a a battery?	t are less likely to ıbai or Hong Ko	be used for	[3] [2] [2]
5	turbine sa Whatb What	pins. This form of ea form of ea	causes a generato nergy is stored by nergy does the spi	r to turn and proc the water when it inning turbine hav	is behind the dam?		so that the	[1] [1] [2]
6	a i Wb i W	Thich is use that is the thich is the	are two nuclear pred in a nuclear porfuel used for this? Sun's energy sount is the fuel?		se energy.			[1] [1] [1]
	iii W	hat eleme	nt is produced?					[1]

7 Here is a list of energy resources available to the world. Some of these are renewable and some are non-renewable.

	Renewable	Non-renewable
coal		
hydroelectricity		
nuclear energy		
oil		
solar energy		
tidal energy		
wind energy		

Make a copy of the table. In the first blank column, put a tick by any **two** resources that are renewable.

In the second blank column, put a tick by any **two** resources that are non-renewable.

[4]

[Cambridge IGCSE® Physics 0625/23, Question 3, October/November, 2012]

8 a Here is a list of some energy resources that might be used to generate electricity:

oil

hydroelectricity

nuclear fission

wind

waves

List any of these that rely on a fuel being consumed.

[2]

b Here is a list of devices that convert energy from one form to another:

battery

electric motor

gas lamp

gas fire

generator

loudspeaker

microphone

Which of these is designed to convert:

- i chemical energy into light energy,
- ii electrical energy into mechanical energy,
- iii sound energy into electrical energy?

[3]

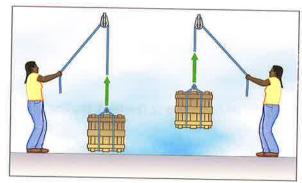
[Cambridge IGCSE® Physics 0625/22, Question 3, May/June, 2010]

8 Work and power

In this chapter, you will find out:

- the ideas of work and power
- how to calculate work and power.

8.1 Doing work


Figure 8.1 shows one way of lifting a heavy object. Pulling on the rope raises the heavy box. As you pull, the force on the box moves upwards.

To lift an object, you need a store of energy (as chemical energy, in your muscles). You give the object more gravitational potential energy (g.p.e.). The force is your means of transferring energy from you to the object. The name given to this type of energy transfer by a force is doing work.

The more work that a force does, the more energy it transfers. The amount of **work done** is simply the amount of energy transferred:

work done = energy transferred

Three further examples of forces doing work are shown in Figure 8.2.

Figure 8.1 Lifting an object requires an upward force, pulling against gravity. As the box rises upwards, the force also moves upwards. Energy is being transferred by the force to the box.

- **a** Pushing a shopping trolley to start it moving. The pushing force does work. It transfers energy to the trolley, and the trolley's kinetic energy (k.e.) increases.
- **b** An apple falling from a tree. Gravity pulls the apple downwards. Gravity does work, and the apple's k.e. increases.
- **c** Braking to stop a bicycle. The brakes produce a backward force of friction, which slows down the bicycle. The friction does work, and reduces the bicycle's k.e. Energy is transferred to the brakes, which get hot.

How much work?

Think about lifting a heavy object, as shown in Figure 8.1. A heavy object needs a big force to lift it. The heavier the object is, and the higher it is lifted, the more its g.p.e. increases. This suggests that the amount of energy transferred by a force depends on two things:

- the size of the force the greater the force, the more work it does
- the distance moved in the direction of the force –
 the further it moves, the more work it does.

So a big force moving through a big distance does more work than a small force moving through a small distance.

Words in physics

You will by now understand that 'work' is a word that has a specialised meaning in physics, different from its meaning in everyday life. When physicists think about the idea of 'work', they think about forces moving.

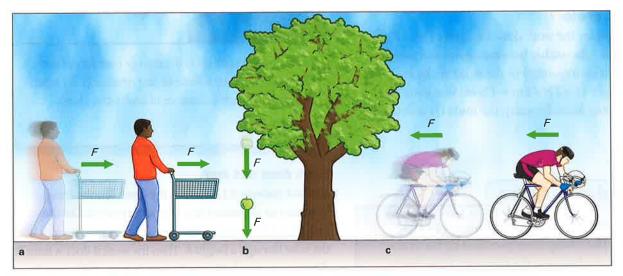


Figure 8.2 Three examples of forces doing work. In each case, the force moves as it transfers energy.

If you are sitting thinking about your homework, no forces are moving and you are doing no work. It is only when you start to write that you are doing work in the physics sense. To make the ink flow from your pen, you must push against the force of friction, and then you really are working. Similarly, you are doing work (in the sense of physics) when you lift up this heavy book.

Many words have specialised meanings in science. In earlier chapters, we used these words: force, mass, weight, velocity, moment and energy. Each has a carefully defined meaning in physics. This is important because physicists have to agree on the terms they are using. However, if you look these words up in a dictionary, you will find that they have a range of everyday meanings, as well as their specialised scientific meaning. This is not a problem, provided you know whether you are using a particular word in its scientific sense or in a more everyday sense. (Some physicists get very upset if they hear shopkeepers talking about weights in kilograms, for example, but no-one will understand you if you ask for 10 newtons of oranges!)

Questions -

- **8.1** Which requires more work, lifting a 10 kg sack of coal or lifting a 15 kg bag of feathers?
- **8.2** Which force does work when a ball rolls down a slope?

8.2 Calculating work done

When a force does work, it transfers energy to the object it is acting on. The amount of energy transferred is equal to the amount of work done. We can write this as a simple equation:

$$W = \Delta E$$

In this equation, we use the symbol Δ (Greek capital letter delta) to mean 'amount of' or 'change in'. So

$$\Delta E$$
 = change in energy

How can we calculate the work done by a force? Above, we saw that the work done depends on two things:

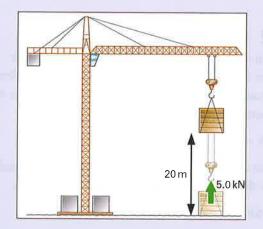
- \bullet the size of the force F
- the distance *d* moved by the force.

We can then write an equation for this, as shown.

Key definition

work done by a force = force \times distance moved by the force in the direction of the force.

$$W = F \times d$$


(The phrase 'in the direction of the force' will be explained shortly.) The symbol *W* represents the amount of work done. Since this is the same as the amount of energy transferred, it is measured in joules (J), the unit of energy.

Joules and newtons

The equation for the work done by a force ($W = F \times d$) shows us the relationship between joules and newtons. If we replace each quantity in the equation by its SI unit, we get $1 J = 1 N \times 1 m = 1 N m$. So a joule is a newton-metre. More formally, the **joule** (J) is defined as shown.

Worked example 8.1

A crane lifts a crate upwards through a height of 20 m. The lifting force provided by the crane is 5.0 kN, as shown in the diagram. How much work is done by the force? How much energy is transferred to the crate?

Step 1: Write down what you know, and what you want to know.

$$F = 5.0 \,\mathrm{kN} = 5000 \,\mathrm{N}$$

 $d = 20 \, \text{m}$

W = ?

Step 2: Write down the equation for work done, substitute values and solve.

$$W = F \times d$$

 $= 5000 \,\mathrm{N} \times 20 \,\mathrm{m}$

= 1000001

So the work done by the force is $100\,000\,\text{J}$, or $100\,\text{kJ}$.

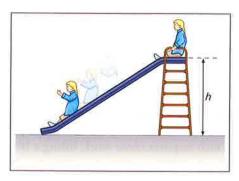
Since work done = energy transferred, this is also the answer to the second part of the question: 100 kJ of energy is transferred to the crate.

Key definition

joule – one joule (1 J) is the energy transferred (or the work done) by a force of one newton (1 N) when it moves through a distance of one metre (1 m).

1 J = 1 N m

Work done and mgh


Worked example 8.1, in which the crane lifts the crate, illustrates an important idea. The force provided by the crane to lift the crate must equal the crate's weight mg. It lifts the crate through a height h. Then the work it does is force \times distance, or $mg \times h$. Hence the gain in g.p.e. of the crate is mgh. This explains where the equation for g.p.e. comes from.

In Figure 8.3, the child slides down the slope. Gravity pulls her downwards, and makes her speed up. To calculate the work done by gravity, we need to know the vertical distance h, because this is the distance moved in the direction of the force. If we calculated the work done as weight \times distance moved down the slope, we would get an answer that was too large. Now you should understand why we write the definition of work done like this:

work done = force × distance moved in the direction of the force

Forces doing no work

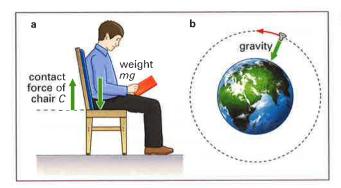
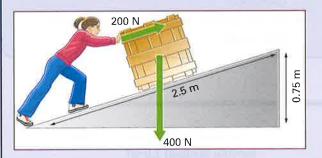

If you sit still on a chair (Figure 8.4a), there are two forces acting on you. These are your weight *mg*, acting downwards, and the upward contact force *C* of the chair, which stops you from falling through the bottom of the chair.

Figure 8.3 It is important to use the correct distance when calculating work done by a force. Gravity makes the child slide down the slope. However, to calculate the energy transferred by gravity, we must use the vertical height moved.

Neither of these forces is doing any work to you. The reason is that neither of the forces is moving, so they do not move through any distance d. Hence, from $W = F \times d$, the amount of work done by each force is zero. When you sit still on a chair, your energy does not increase or decrease as a result of the forces acting on you.

Figure 8.4b shows another example of a force that is doing no work. A spacecraft is travelling around the Earth in a circular orbit. The Earth's gravity pulls on the spacecraft to keep it in its orbit. The force is directed towards the centre of the Earth. However, since the spacecraft's orbit is circular, it does not get any closer to the centre of the Earth. There is no movement in the direction of the force, and so gravity does no work. The spacecraft continues at a steady speed (its k.e. is constant) and at a constant height above the Earth's surface (its g.p.e. is constant). Of course, although the force is doing no work, this does not mean that it is not having an effect. Without the force, the spacecraft would escape from the Earth and disappear into the depths of space.


Figure 8.4 a When you sit still in a chair, there are two forces acting on you. Neither transfers energy to you. **b** The spacecraft stays at a constant distance from the Earth. Gravity keeps it in its orbit without transferring any energy to it.

Study tip

Remember that there must always be movement in the direction of the force if the force is to do work.

Worked example 8.2

A girl can provide a pushing force of only 200 N. To move a box weighing 400 N onto a platform, she uses a plank as a ramp, as shown in the diagram. How much work does she do in raising the box? How much g.p.e. does the box gain?

Step 1: Write down what you know, and what you want to know.

pushing force along the slope $F = 200 \,\mathrm{N}$ distance moved along slope $d = 2.5 \,\mathrm{m}$ weight of box downwards $mg = 400 \,\mathrm{N}$ vertical distance moved $h = 0.75 \,\mathrm{m}$ work done along the slope W = ? work done against gravity W' = ?

Step 2: Calculate the work done by the pushing force along the slope, *W*.

W = pushing force along slope \times distance moved along slope

 $=F\times d$

 $= 200 \,\mathrm{N} \times 2.5 \,\mathrm{m}$

= 500 J

Step 3: Calculate the gain in g.p.e. of the box. This is the same as the work done against gravity, W'.

W' = weight of box

× vertical distance moved

 $= mg \times h$

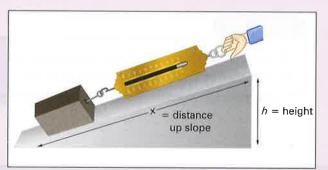
 $= 400 \,\mathrm{N} \times 0.75 \,\mathrm{m}$

 $= 300 \, J$

So the girl does 500 J of work, but only 300 J is transferred to the box. The remaining 200 J is the work done against friction as the box is pushed along the slope.

Activity 8.1 Doing work

Skills


AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

Pull a load up a slope so that you do work. Where does your energy go?

In this activity, you will pull a load (a wooden block) up a slope using a newtonmeter. In this way you can measure the force and the distance moved up the slope. Then you can calculate the work done by your force:

work done = force \times distance moved up the slope

The load gains g.p.e. as it moves upwards. You can measure its weight and the vertical distance it moves. Then you can calculate the g.p.e. gained by the load:

gain in g.p.e. = weight × increase in height

Your task is to answer this question: What fraction of the work done by your force is converted to g.p.e. of the load?

- 1 Arrange a plank so that it has a slope of about 30°. Fix it securely.
- 2 Attach a newtonmeter to a block you may need to use string for this.
- 3 Place the block at the foot of the slope. Pull it gently up the slope so that the force you use is roughly constant. Record the value of the force.
- 4 Measure the length along the slope and the height of the top end of the slope.
- 5 Calculate the work done by the force and the gain in g.p.e. of the block.
- **6** Calculate the ratio g.p.e./work done. This is the efficiency of your pulling.

Further investigations

Here are some questions you could investigate:

- Which is more efficient, a rough slope or a smooth slope?
- ◆ Does the angle of the slope make any difference?
- Do you find the same answer for heavy and light loads?

Questions

- **8.3** In what unit do we measure the work done by a force?
- **8.4** A fast-moving car has 0.5 MJ of kinetic energy. The driver brakes and the car comes to a halt. How much work is done by the force provided by the brakes?
- **8.5 a** How much work is done by a force of 1.0 N moving through 1.0 m?
- **b** How much work is done by a force of 5.0 N moving through 2.0 m?
- **8.6** Which does more work, a force of 500 N moving through 10 m or a force of 100 N moving through 40 m?
- 8.7 A steel ball of weight 50 N hangs at a height of 5.0 m above the ground, on the end of a chain 2.0 m in length. How much work is done on the ball by gravity, and by the tension in the chain?

8.3 Power

Exercising in the gym (Figure 8.5) can put great demands on your muscles. Speeding up the treadmill means that you have to work harder to keep up. Equally, your trainer might ask you to find out how many times you can lift a set of weights in one minute. These exercises are a test of how powerful you are. The faster you work, the greater your power.

In physics, the word **power** is used with a special meaning. It means the rate at which you do work (that is, how fast you work). The more work you do, and the shorter the time in which you do it, the greater your power. Power is the rate at which energy is transferred, or the rate at which work is done.

Fast working

Power tells you about the rate at which a force does work – in other words, the rate at which it transfers energy. When you lift an object up, you are giving it energy. (Its potential energy is increasing.) Here are two ways you can increase your power:

- lift a heavier object in the same time
- lift the object more quickly.

Figure 8.5 It is hard work down at the gym. It is easier to lift small loads, and to lift them slowly. The greater the load you lift and the faster you lift it, the greater the power required. It is the same with running on a treadmill. The faster you have to run, the greater the rate at which you do work.

It is not just people who do work. Machines also do work, and we can talk about their power in the same way.

- A crane does work when it lifts a load. The bigger the load and the faster it lifts the load, the greater is the power of the crane.
- ◆ A locomotive pulling a train of coaches or wagons does work. The greater the force with which it pulls and the greater the speed at which it pulls, the greater is the power of the locomotive.

Question

8.8 Your neighbour is lifting bricks and placing them on top of a wall. He lifts them slowly, one at a time. State **two** ways in which he could increase his power (the rate at which he is transferring energy to the bricks).

8.4 Calculating power

From section 8.3, power is the rate at which work is done. Since work done is equal to energy transferred, we can write these ideas about power as equations, as shown.

Key definition

power – the rate at which work is done, or the rate at which energy is transferred.

$$power = \frac{\text{work done}}{\text{time taken}}$$

$$P = \frac{W}{t}$$

$$power = \frac{\text{energy transferred}}{\text{time taken}}$$

$$P = \frac{\Delta E}{t}$$

Units of power

Power is measured in watts (W). One watt (1 W) is the power when one joule (1 J) of work is done in one second (1 s). So one watt is one joule per second.

$$1 W = 1 J/s$$

$$1000 W = 1 kW \text{ (kilowatt)}$$

$$1000 000 W = 1 MW \text{ (megawatt)}$$

Key definition

watt (W) – the SI unit of power; the power when 1 J of work is done in 1 s.

$$1 W = 1 J/s$$

Take care not to confuse (*italic*) *W* for work done (or energy transferred) with (upright) W for watts. In books, the first of these is shown in *italic* type (as here), but you cannot tell the difference when they are hand-written.

Study tip

SI units are often related to each other. It is useful to remember some of the connections, such as 1 J = 1 N m and 1 W = 1 J/s.

Power in general

We can apply the idea of power to any transfer of energy. For example, electric light bulbs transfer energy supplied to them by electricity. They produce light and heat. Most light bulbs are labelled with their power rating – for example, 40 W, 60 W, 100 W – to tell the user about the rate at which the bulb transfers energy.

We can express the efficiency of a light bulb or any other energy-changing device in terms of the power it supplies:

$$efficiency = \frac{useful\ power\ output}{power\ input} \times 100\%$$

Compare this with the equation for energy efficiency in terms of energy which we saw in Chapter 6:

$$efficiency = \frac{useful\ energy\ output}{energy\ input} \times 100\%$$

There is more about electrical power in Chapter 19.

Worked example 8.3

A car of mass 800 kg accelerates from rest to a speed of 25 m/s in 10 s. What is its power?

Step 1: Calculate the work done. This is the increase in the car's kinetic energy.

k.e. =
$$\frac{1}{2}mv^2$$

= $\frac{1}{2} \times 800 \text{ kg} \times (25 \text{ m/s})^2$
= 250000 J

Step 2: Calculate the power.

$$power = \frac{\text{work done}}{\text{time taken}}$$
$$= \frac{W}{t}$$
$$= \frac{250000 \text{ J}}{10 \text{ s}}$$
$$= 25000 \text{ W} = 25 \text{ kW}$$

So the energy is being transferred to the car (from its engine) at a rate of 25 kW, or 25 kJ per second.

Car engines are not very efficient. In this example, the car's engine may transfer energy at the rate of 100 kW or so, although most of this is wasted as thermal (heat) energy.

Questions

- **8.9 a** How many watts are there in a kilowatt?
 - **b** How many watts are there in a megawatt?
- **8.10** It is estimated that the human brain has a power requirement of 40 W. How many joules is that per second?
- **8.11** A light bulb transfers 1000 J of energy in 10 s. What is its power?
- **8.12** An electric motor transfers 100 J in 8.0 s. If it then transfers the same amount of energy in 6.0 s, has its power increased or decreased?

Activity 8.2 Measuring your power

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.3 Make and record observations, measurements and estimates

It is hard work running up a flight of stairs. Time yourself and calculate your power.

Safety

Take care to work safely in this activity. Work in a space where you will not interfere with others. Do not over-exert yourself.

Here are two ways to measure the power of your body. Try them both and compare your answers.

Method 1: Running up stairs

How quickly can you run up stairs? To measure your power, you will need to know:

- ♦ your weight, mg
- ♦ the height you have risen, h
- ◆ the time you have taken, *t*.

Here is the method:

- 1 Weigh one student, who then runs up a flight of stairs.
- 2 Another student times them.
- 3 Measure the height of one step and calculate the height of the flight.
- 4 Work out the student's power.

Method 2: Stepping up onto a bench

If you step from the floor on to a low bench, your centre of gravity becomes higher and you are gaining g.p.e. To measure your power, you will need to know:

- your weight, mg
- the height risen by your centre of gravity, h
- the time you have taken, t.

Here is the method:

- 1 Weigh one student, who steps up from the ground on to a bench, then steps down again.
- 2 The student repeats this as often as possible in a time of, say, 20 s.
- 3 Measure the height of one step and multiply this by the number of times they have completed the task, to give the height risen.
- 4 Work out the student's power.

Summary

You should know:

- that work is energy transferred by a force
- how to calculate work done
 - that power is the rate at which energy is transferred
- ♦ how to calculate power.

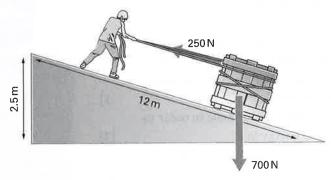
End-of-chapter questions

- 1 When a force moves, it does work. Copy and complete the following sentences, writing more or less in the spaces.
 - a When it moves, a bigger force does work than a smaller force.
 - **b** The greater the distance moved by the force, the work it does.

- 2 Power tells us about how quickly work is done. Copy and complete the following sentences, writing *work* or *energy* in the spaces.
 - **a** Power is the rate at which is transferred.
 - **b** Power is the rate at which is done.
- 3 Write an equation showing how work done and energy transferred are related.
- **4** We can calculate work done using this equation: $W = F \times d$.
 - a Write this equation in words.
 - **b** Copy and complete the table to show the units of each quantity in the equation.

Quantity	Unit
W	
F	
d	

- **c** We can also write W = E. What does ΔE represent?
- 5 We can calculate power using this equation: $P = \frac{W}{t}$.
 - a Write this equation in words.
 - **b** Copy and complete the table to show the units of each quantity in the equation.


Quantity	Unit
P	
W	
t	

- Omar and Ahmed are lifting weights in the gym. Each lifts a weight of 200 N. Omar lifts the weight to a height of 2.0 m, whereas Ahmed lifts it to a height of 2.1 m. Who does more work in lifting the weight? Explain how you know.
- 7 Millie and Lily are identical twins who enjoy swimming. Their arms and legs provide the force needed to move them through the water. Millie can swim 25 m in 50 s. Lily can swim 100 m in 250 s.
 - a Calculate the swimming speed of each twin. [2]

[2]

b Which twin has the greater power when swimming? Explain how you can tell. [2]

Jim is pulling a load along a ramp, as shown. The diagram shows the force with which he pulls and the weight of the load.

Calculate the work done by Jim's pulling force.

[3]

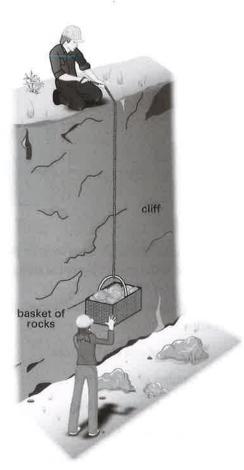
What is the gain in potential energy of the load?

- [3]
- Two girls are estimating each other's power. One runs up some steps, and the other times her. Here are their results:

height of one step = $20 \, \text{cm}$

number of steps = 36

mass of runner = $45 \, \text{kg}$

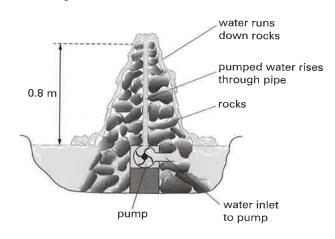

time taken = $4.2 \, \text{s}$

- Calculate the runner's weight. (Acceleration due to gravity $g = 10 \text{ m/s}^2$.) [2]
- Calculate the increase in the girl's gravitational potential energy as she runs up the steps. [3]
- [4] Calculate her power. Give your answer in kilowatts (kW).
- 10 A car of mass 750 kg accelerates away from traffic lights. At the end of the first 100 m it has reached a speed of 12 m/s. During this time, its engine provides an average forward force of 780 N, and the average force of friction on the car is 240 N.
 - [3] Calculate the work done on the car by the force of its engine.
 - [3] Calculate the work done on the car by the force of friction.
 - Using k.e. = $\frac{1}{2}mv^2$, calculate the increase in the car's kinetic energy at the end of the first 100 m. [2]
 - d Explain whether your answers are consistent with the principle of conservation of energy. [3]

11 Two geologists are collecting rocks from the bottom of a cliff. The rocks are loaded into a basket and then pulled up the cliff on the end of a rope, as shown in the diagram.

The basket of rocks is brought to rest at the top of the cliff.

- **a** i Which form of energy that the basket possesses is significantly greater at the top of the cliff than when it is at the bottom of the cliff?
 - ii Which two measurements must be made in order to calculate the increase in energy in i?
- **b** Which form of energy in his body has the man at the top of the cliff used in order to raise the basket of rocks?
- c State the measurement needed, in addition to those in a ii, in order to calculate the useful power developed by the man at the top of the cliff. [2]
 [Cambridge IGCSE® Physics 0625/22, Question 4, May/June, 2012]


[1]

[2]

[1]

An ornamental garden includes a small pond, which contains a pumped system that causes water to go up a pipe and then to run down a heap of rocks.

The diagram shows a section through this water feature.

The density of water is 1000 kg/m³. A volume of 1 litre is equal to 0.001 m³.

- a Calculate the mass of 1 litre of water.
- **b** Calculate the work done raising 1 litre of water through a height of 0.8 m.
- c The pump lifts 90 litres of water per minute. Calculate the minimum power of the pump.
- **d** The pump is switched off. Immediately after the pump is switched off, what is the value of the water pressure at the bottom of the 0.8 m pipe, due to the water in the pipe?

[Cambridge IGCSE® Physics 0625/33, Question 3, May/June, 2010]

[2]

[2]

[2]

[2]

Block 2

Thermal physics

We are fortunate because we live on the Earth. The Earth is a planet orbiting the Sun at a distance of 150 million kilometres. The Sun keeps the Earth warm, with an average temperature of about 15 °C. At night, the temperature drops because we are facing away from the Sun, outwards into the coldness of space. Because the Earth spins, every part of the globe faces the Sun periodically and has a chance to warm up again after the cooling down of the night.

Things are different out in space. Space is cold and dark. Its average temperature is close to -270 °C. How can we know that? It is simple. Scientists have sent spacecraft like the one shown out into space to measure the temperature. The temperature probe used must be shielded from the Sun's rays and also from any warmth of the spacecraft itself. Measurements show that the average temperature of space is just 2.7 degrees above absolute zero, the coldest possible temperature.

In fact, the temperature of space had been correctly predicted before anyone had a chance to measure it. The prediction came from the Big Bang theory of the origin of the Universe. The idea is that, roughly 13.7 billion years ago, the Universe 'exploded' into existence. Ever since, it has been expanding and so cooling. When scientists measure the temperature of space, they are detecting the last remnants of the great fireball that was the early Universe.

In this block, we will look at some of these ideas in more detail. In particular, we will look at what we mean by temperature and how thermal (heat) energy travels around.

An artist's impression of the *Cosmic Background Explorer* in space. This spacecraft measured the temperature of space by detecting the radiation left over from the Big Bang. The gold-coloured 'skirt' shields the temperature sensors from heat from the Sun and Earth.

9

The kinetic model of matter

In this chapter, you will find out:

- how to describe matter in three states (solid, liquid and gas)
- how to describe changes of state
- how the kinetic model can be used to explain changes of state and the behaviour of gases
- ♦ how the kinetic model can be explained in terms of the forces between particles
- how to calculate changes in pressure and volume of a gas.

Snow

Young people usually enjoy snow (Figure 9.1). You may live in a country where snow is rarely seen. Alternatively, you may be snow-bound for several months of the year. If you do experience snow, you will know the excitement of the first fall of the winter. Everyone rushes out to have snowball fights, or to go tobogganing or skiing.

Snow is remarkable stuff. It is simply frozen water. Yet people such as the Inuit who live among snow have many different words for it, depending on how it is packed down, for instance. This can be vital information if you are interested in winter sports, since it determines the avalanche risk.

We are familiar with the changes that happen when snow or ice melts. A white or glassy solid

changes into a transparent, colourless, runny liquid. Heat the liquid and it 'vanishes' into thin air. Although this sounds like a magic trick, it is so familiar that it does not strike us as surprising. The Earth is distinctive among the planets of the solar system in being the only planet on which water is found to exist naturally in all three of its physical states.

In this chapter, we will look at what happens when materials change their state – from solid to liquid to gas, and back again. By thinking about the particles, the atoms and molecules of which the material is made, we can build up a picture or model that describes changes of state and explains some of the things we observe when materials change from one state to another.

Figure 9.1 Dubai is a hot place, but you can still ski there on the artificial snow in this covered ski centre.

9.1 States of matter

We think of matter as existing in three states, *solid*, *liquid* and *gas*. What are the characteristic properties of each of these three states? We need to think about shape and size. Table 9.1 shows how these help us to distinguish between solids, liquids and gases. It may help you to think about ice, water and steam as examples of the three states of matter.

Here is a trick to try on a small child. Pour a drink into a short, wide glass. Then pour it from that glass into a tall, narrow glass. Ask them which drink they would prefer. Many small children ask for the drink in the tall glass because it appears that there is more. Of course, you will realise that, although the drink changes its shape when you pour it from one container to another, its size (volume) stays the same.

Changes of state

Heat a solid and it melts to become a liquid. Heat the liquid and it boils to become a gas. Cool the gas and it becomes first a liquid and then a solid. These are *changes of state*. The names for these changes are shown in Figure 9.2:

- melting from solid to liquid
- ◆ boiling from liquid to gas
- ◆ condensing from gas to liquid
- *freezing* from liquid to solid.

Another term for a liquid changing to a gas is **evaporation**. We will see the difference between evaporation and boiling shortly.

Figure 9.3 shows what happens if you take some ice from the deep freeze and heat it at a steady rate. In a deep freeze, ice is at a temperature well below its freezing point (0 °C). From the graph, you can see that the ice warms up to 0 °C, then remains at this

State	Size	Shape
Solid	occupies a fixed volume	has a fixed shape
Liquid	occupies a fixed volume	takes the shape of its container
Gas	expands to fill its container	takes the shape of its container

Table 9.1 The distinguishing properties of the three states of matter.

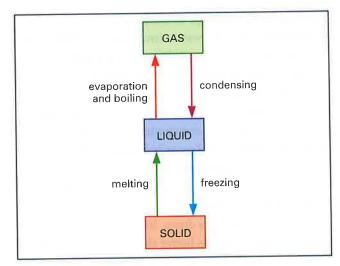
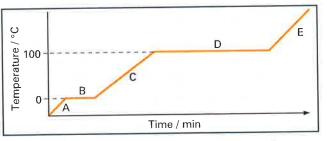



Figure 9.2 Naming changes of state.

Figure 9.3 A temperature against time graph to show the changes that occur when ice is heated until it eventually becomes steam.

temperature while it melts. Lumps of ice float in water; both are at 0 °C. When all of the ice has melted, the water's temperature starts to rise again. At 100 °C, the boiling point of water, the temperature again remains steady. The water is boiling to form steam. This takes longer than melting, which tells us that it takes more energy to boil the water than to melt the ice. Eventually, all of the water has turned to steam. If we can continue to heat the steam, its temperature will rise again.

Notice that energy must be supplied to change a solid into a liquid. At the same time, its temperature remains constant as it melts. Similarly, when a liquid becomes a gas, its temperature remains constant even though energy is being supplied to it.

Study tip

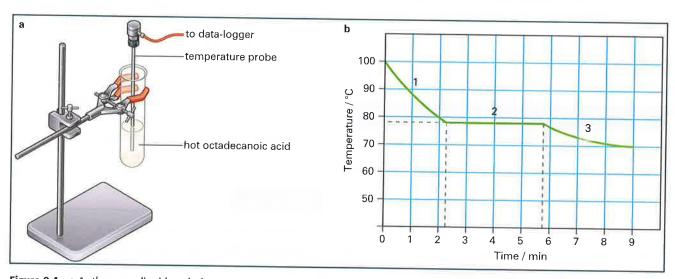
Remember that ice is not always at 0° C – it may be colder than that. When you take ice from a freezer, it may be as cold as -20° C.

Investigating a change of state

Figure 9.4a shows one way to investigate the behaviour of a liquid material as it solidifies. The test tube contains a waxy substance called octadecanoic acid. This is warmed up, and it becomes a clear, colourless liquid. It is then left to cool down, and its temperature is monitored using a thermometer (an electronic temperature probe) and recorded using a data-logger.

The graph of Figure 9.4b shows the results. From the graph, you can see that there are three stages in the cooling of the material.

- 1 The liquid wax cools down. Its temperature drops gradually. The wax is hotter than its surroundings, so it loses heat. Notice that the graph is slightly curved; this is because, as the temperature drops, there is less difference between the temperature of the wax and its surroundings, so it cools more slowly.
- 2 Now the wax's temperature remains constant for a few minutes. The tube can be seen to contain a mixture of clear liquid and white solid the wax is solidifying. During this time, the wax is still losing heat, because it is still warmer than its surroundings, but its temperature does not decrease. This is an important observation that needs explaining.
- 3 The wax's temperature starts to drop again. It is now entirely solid, and it continues cooling until it reaches the temperature of its surroundings.


From the horizontal section of the graph (stage 2) we can draw a horizontal line across to the temperature axis and find the substance's melting point.

From the experiment shown in Figure 9.4, you can see that a pure substance changes from solid to liquid at a particular temperature, known as the **melting point**. Similarly, a liquid changes to a gas at a fixed temperature, its **boiling point**. Table 9.2 shows the melting and boiling points of some pure substances.

Note that we have to be careful here to talk about *pure* substances. The temperature at which a substance melts or boils is different when another substance is dissolved in it. For example, salty water boils at a higher temperature than pure water, and freezes at a lower temperature. A mixture of substances may even melt or boil over a

Substance	Melting point / °C	Boiling point /°C
helium	-272	-269
oxygen	-218	-183
nitrogen	-191	-177
mercury	-39	257
water	0	100
iron	2080	3570
diamond (carbon)	4100	5400
tungsten	3920	6500

Table 9.2 The melting and boiling points of some pure substances. Mercury is interesting because it is the only metal that is not solid at room temperature. Tungsten is a metal, and it has the highest boiling point of any substance. Helium has the lowest melting and boiling points of any element. In fact, helium will only solidify if it is compressed as well as cooled.

Figure 9.4 a As the warm liquid cools, its temperature is monitored by the electronic temperature probe. **b** The graph shows how the temperature of the octadecanoic acid drops as it cools. The temperature remains constant as the liquid solidifies.

range of temperatures. Candle wax is an example. It is not a single, pure substance, and some of the substances in it melt at lower temperatures than others. Similarly, crude oil is a mixture of different substances, each with its own boiling point. You may have studied the process of fractional distillation, which is used to separate these substances (fractions) at an oil refinery.

There are other ways in which materials can behave when they are heated: some burn, and others decompose (break down) into simpler substances before they have a chance to change state.

Activity 9.1 Measuring melting point

Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- AO3.3 Make and record observations, measurements and estimates
- AO3.4 Interpret and evaluate experimental observations and data

Carry out an experiment to determine the melting point of octadecanoic acid (a white, waxy solid) or some other pure substance. Use the method shown in Figure 9.4.

In this experiment you can use a thermometer and timer. Alternatively, you could use a temperature probe connected to data-logger.

- 1 Stand a tube of octadecanoic acid in a water bath until the acid melts and its temperature reaches 80 °C.
- 2 Using tongs, transfer the tube to a test-tube rack or a clamp and stand.
- 3 Insert a thermometer or temperature probe and immediately start recording the temperature of the acid.
- 4 Record values of temperature every minute until the acid has cooled to below 60 °C. By now, it will be a solid.
- 5 You may need to return the tube to the water bath to re-melt the acid in order to remove the thermometer or probe.
- **6** Draw a graph and use it to determine the melting point of octadecanoic acid.

Questions

- **9.1** To measure the volume of a liquid, you can pour it into a measuring cylinder. Measuring cylinders come in different shapes and sizes tall, short, wide, narrow. Explain why the *shape* of the cylinder does not affect the measurement of volume.
- **9.2** What name is given to the temperature at which a gas condenses to form a liquid?
- **9.3 a** What name is given to the process in which a liquid changes into a solid?
 - **b** What name is given to the temperature at which this happens?
- **9.4 a** Look at Figure **9.3** shown earlier. What is happening in the section marked C?
 - **b** Name the substance or substances present in the section marked D.
- **9.5** Look at Figure **9.4b**. From the graph, deduce the melting point of octadecanoic acid.
- **9.6** Table 9.2 shows the melting and boiling points of nitrogen and oxygen, the main constituents of air. Why can we not talk about the melting and boiling points of air?

9.2 The kinetic model of matter

Several questions arise from our discussion of changes of state. In this section, we will look at a **model** for matter that provides one way in which we can answer the following questions:

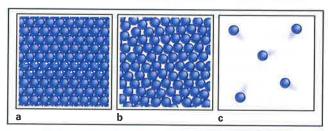
- ◆ Why does it take time for a solid to melt? Why does it not change instantly into a liquid?
- Why does it take longer to boil a liquid than to melt a solid?
- ♦ Why do different substances melt at different temperatures?
- Why do different substances have different boiling points?

The model we are going to consider is called the **kinetic** model of matter. As we saw in Chapter 6, the word 'kinetic' means 'related to movement'. In this model, the things that are moving are the particles of which matter is made. The model thus has an alternative name: the particle model of matter.

The particles of which matter is made are very tiny. They may be atoms, molecules or ions, but we will simplify things by disregarding these differences and referring only to *particles*. We will also picture a material as consisting of large numbers of identical particles. Thus we are considering a pure substance whose particles are all the same, rather than a mixture that contains two or more types of particle. We will also picture the particles as simple spheres, although in reality they might have more complicated shapes. The molecules of a polymer, for example, may be like long thin strings of spaghetti, rather than like small, round peas.

The idea that matter is made up of spherical particles is a great simplification, but we can still use this idea to find answers to the questions listed above. Later, we will think about whether or not we are justified in using such a simplified model.

Study tip


If you are also studying chemistry, you may have come across some of these ideas already.

Arrangements of particles

Figure 9.5 shows how we picture the particles in a solid, a liquid and a gas. For each picture, we will think about two aspects (see Table 9.3): how the particles are arranged, and how the particles are moving. (Because these are pictures printed on paper, it is hard to represent the motion of the particles. You may have access to software or video images that can show this more clearly.)

Evidence for the kinetic model

We cannot look down a microscope and see the particles that make up matter. We certainly cannot hope to see the particles of a gas as they rush around. However, in the 1820s, the movement of the particles of a gas was

Figure 9.5 Representations of **a** solid, **b** liquid and **c** gas. The arrangement and motion of the particles change as the solid is heated to become first a liquid and then a gas.

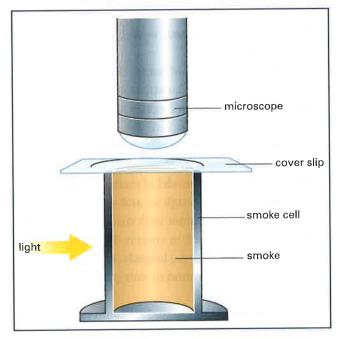

State	Arrangement of particles	Movement of particles
Solid	The particles are packed closely together. Notice that each particle is in close contact with all of its neighbours. In a solid such as a metal, each atom may be in contact with 12 neighbouring atoms.	Because the particles are so tightly packed, they cannot move around. However, they do move a bit. They are able to vibrate about a fixed position. The hotter the solid, the more they vibrate.
Liquid	The particles are packed slightly less closely together (compared with a solid). Each particle is still in close contact with most of its neighbours, but fewer than in the case of a solid. The general arrangement is slightly more jumbled and disorderly.	Because the particles are slightly less tightly packed than in a solid, they have the opportunity to move around within the bulk of the liquid. Hence the particles are both vibrating and moving from place to place.
Gas	Now the particles are widely separated from one another. They are no longer in contact, unless they collide with each other. In air, the average separation between the particles is about ten times their diameter.	The particles are now moving freely about, bouncing off one another and off the walls of their container. In air at room temperature, their average speed is about 500 m/s.

Table 9.3 The arrangement and movement of particles in the three different states of matter. Compare these statements with the diagrams shown in Figure **9.5**.

investigated by a Scottish botanist, Robert Brown. He was using a microscope to study pollen grains when he noticed tiny particles jiggling about. At first he thought that they might be alive, but when he repeated his experiment with tiny grains of dust, suspended in water, he saw that they also moved around. This motion is now known as **Brownian motion**, and it happens because the moving particles are constantly buffeted by the fast-moving particles of the air.

Today, we can perform a similar experiment using smoke grains. The oxygen and nitrogen molecules that make up the air are far too small to see, so we have to look at something bigger, and look for the effect of the air molecules. We use a smoke cell (Figure 9.6), which contains air with a small amount of smoke. The cell is lit from the side, and the microscope is used to view the smoke grains.

The smoke grains show up as tiny specks of light, but they are too small to see any detail of their shape. What is noticeable is the way they move. If you can concentrate on a single grain, you will see that it follows a somewhat jerky and erratic path. This is a consequence of the grain suffering repeated collisions with air molecules.

Figure 9.6 An experimental arrangement for observing Brownian motion. The grains of smoke are just large enough to show up under the microscope. The air molecules that collide with them are much too small to see.

Observing Brownian motion of smoke or pollen grains does not mean that we have proved that air and water are made of moving particles. We have not seen the particles themselves. Observing Brownian motion is rather like watching a hockey match from an aircraft high overhead. You may see the players rushing around, but you cannot see the ball. Careful observation over a period of time might lead you to guess that there was a ball moving around among the players, and eventually you might work out the rules of hockey.

However, the kinetic model does give a satisfying explanation of Brownian motion. Much of what scientists have learned since Brown did his first experiments has confirmed his suggestion that he had discovered an effect caused by moving molecules.

Study tip

Remember that, when we observe Brownian motion, we are not seeing particles of air or water. We are seeing their effects on larger, visible particles.

Activity 9.2 Observing Brownian motion

Using the apparatus shown in Figure 9.6, you can watch brightly lit smoke grains moving in air.

An alternative method uses tiny plastic spheres floating in water instead of smoke particles in air.

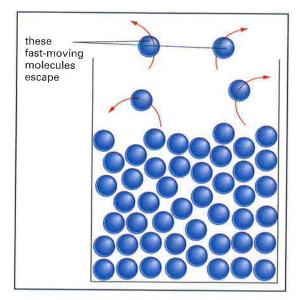
You may also be able to watch a video of Brownian motion.

Explanations using the kinetic model

The kinetic model of matter can be used to explain many observations. Here are some of them:

- ◆ Liquids take up the shape of their container, because their particles are free to move about within the bulk of the liquid.
- Gases fill their container, because their particles can move freely about.
- Solids retain their shape, because the particles are packed tightly together.

- Gases diffuse (spread out) from place to place, so that, for example, we can smell perfume across the room. The perfume particles spread about because they are freely mobile.
- ◆ Similarly, dissolved substances diffuse throughout a liquid. Sugar crystals in a drink dissolve and molecules spread throughout the liquid, carried by the mobile particles. In a hotter drink, the particles are moving faster and the sugar diffuses more quickly.
- Most solids expand when they melt. The particles are slightly further apart in a liquid than in a solid.
- ◆ Liquids expand a lot when they boil. The particles of a gas are much further apart than in a liquid. We can think about this the other way round. Gases contract a lot when they condense. If all of the air in the room you are now in was cooled enough, it would condense to form a thin layer of liquid, two or three millimetres deep, on the floor.


Evaporation

The boiling point of water is 100 °C, but water does not have to be heated to 100 °C before it will turn into a gas. After a downpour of rain, the puddles eventually dry up even though the temperature is much lower than 100 °C. We say that the water has become water vapour in the air. This is the process of evaporation. We can think of a vapour as a gas at a temperature below its boiling point.

A liquid evaporates more quickly as its temperature approaches its boiling point. That is why puddles disappear quickly after a storm in the tropics, where the temperature may be 30 °C, but they may lie around for days in a cold region, where the temperature is close to 0 °C.

How can we use the kinetic model of matter to explain evaporation? Imagine a beaker of water. The water will gradually evaporate. Figure 9.7 shows the particles that make up the water. The particles of the water are moving around, and some are moving faster than others. Some may be moving fast enough to escape from the surface of the water. They become particles of water vapour in the air. In this way, all of the water particles may eventually escape from the beaker, and the water has evaporated.

If you get wet, perhaps because you are caught in the rain or you have been swimming, you will notice that you can quickly get cold. The water on your body is evaporating, and this cools you down. Why does evaporation make things cooler?

Figure 9.7 Fast-moving particles leave the surface of a liquid – this is how it evaporates.

Look again at Figure 9.7. The particles that are escaping from the water are the fastest-moving ones. They are the particles with the most energy. This means that the particles that remain are those with less energy, and so the water is colder.

Questions -

- **9.7 a** Why is the kinetic model of matter called *kinetic*?
 - **b** In which state of matter do the particles have the most kinetic energy?
- **9.8 a** In which state of matter are the particles most closely packed?
 - **b** In which state of matter are they most widely separated?
- **9.9** Use the kinetic model of matter to explain why we can walk through air and swim through water but we cannot walk through a solid wall.
- **9.10** In an experiment to observe Brownian motion, a student watched a brightly lit grain of dust moving around in water, following a random path.
 - **a** Explain why the student could not see the molecules of the water moving around.
 - **b** Explain why the grain of dust moved around in the water.

9.3 Forces and the kinetic theory

So far, we have seen how the kinetic theory of matter can successfully explain some observations of the ways in which solids, liquids and gases differ. We can explain some other observations if we add another scientific idea to the kinetic theory: we need to consider the forces between the particles that make up matter.

Why do the particles that make up a solid or a liquid stick together? There must be *attractive forces* between them. Without attractive forces to hold together the particles that make up matter, we would live in a very dull world. There would be no solids or liquids, only gases. No matter how much we cooled matter down, it would remain as a gas.

Another way to refer to these forces is to say that there are *bonds* between the particles. Each particle of a solid is strongly bonded to its neighbours. This is because the forces between particles are strongest when the particles are close together. In a liquid, the particles are slightly further apart and so the forces between them are slightly weaker. In a gas, the particles are far apart, so that the particles do not attract each other and can move freely about.

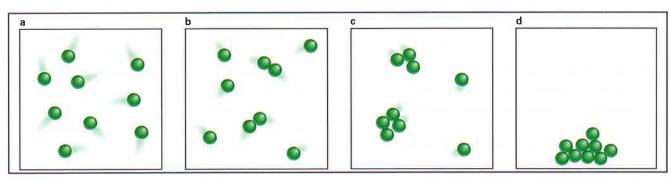
Study tip

Remember that, in a gas, the particles occupy only a small volume – the rest is a vacuum, empty space.

Kinetic theory and changes of state

What happens to these attractive forces as a solid is heated? The particles start to vibrate more and more

strongly. Eventually, the particles vibrate sufficiently for some of the bonds to be broken, and a liquid is formed. Heat the material more and eventually the particles have sufficient energy for all of the attractive forces between particles to be overcome. The material becomes a gas.


In a gas, the particles are so far apart and moving so fast that they do not stick together. If you cool down a gas (Figure 9.8), the particles move more slowly. As they collide with one another, there is more chance that they will stick together. Keep cooling the gas and eventually all of the particles stick together to form a liquid.

More about evaporation

Evaporation is different from boiling. A liquid boils at its boiling point – all of the liquid reaches this temperature and it gradually turns into a gas. Evaporation happens at a lower temperature, below the boiling point.

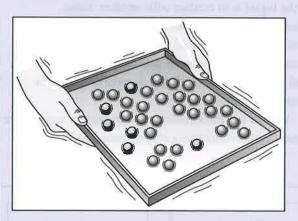
We have seen at the end of section 9.2 that the kinetic model can explain why a liquid cools as it evaporates, because it is the most energetic particles that are leaving its surface. Now the particles of the liquid have less energy (on average) and so the temperature of the liquid decreases. If the liquid is in contact with another object, energy will transfer from the object into the liquid. This is why you feel cold when water evaporates from your skin. The water gets colder as it evaporates and energy leaves your body, transferring into the remaining water.

We can use the kinetic model to explain some more observations concerning evaporation (see Table 9.4).

Figure 9.8 a As a gas is cooled, it starts to condense. **b** The particles move more slowly and they start to stick together, because of the attractive forces between them. **c** As their energy gets less, they clump together in bigger and bigger groups. **d** Finally, they form a liquid.

Observation	Explanation
A liquid evaporates more rapidly when it is hotter.	At a higher temperature, more of the particles of the liquid are moving fast enough to escape from the surface.
A liquid evaporates more quickly when it is spread out, so that it has a greater surface area.	With a greater surface area, more of the particles are close to the surface, and so they can escape more easily.
A liquid evaporates more quickly when a draught blows across its surface.	A draught is moving air. When particles escape from the water, they are blown away so that they cannot fall back in to the water.

Table 9.4 Evaporation – observations and explanations.


Activity 9.3 Using the kinetic model

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.4 Interpret and evaluate experimental observations and data

Discuss how the kinetic model of matter can explain some observations using a simple way to demonstrate the kinetic model.

- 1 Take a shallow tray and place in it a number of identical small balls. They should cover about one-quarter of the area of the tray.
- 2 Tip the tray slightly so that the balls all roll to the lower end. The pattern they form is like the arrangement of particles in a solid.

- **3** Keep the tray slightly tipped and shake it gently so that the balls can move about. This is like a liquid.
- 4 Keep shaking the tray and tip it so that it becomes horizontal. The balls move around freely, colliding with each other and the sides of the tray. This is like the particles in a gas.

This is quite a good way of representing the kinetic model. It uses the balls to represent the particles of which matter is made. However, the particles of matter attract each other, but the balls do not. Instead, by tipping the tray, you use gravity to make the balls move together as though they were attracting each other.

Your task is to answer one or more of the questions below. Select a question and discuss how you would answer it with a partner. In your answer, you must use the kinetic model. You may wish to present your ideas to the class with the aid of the tray and balls described above.

Questions to discuss and explain

- 1 Why are there three states of matter?
- 2 How can a solid evaporate?
- 3 Why do liquids cool when they evaporate?
- 4 Why does it take time for a solid to melt? Why does it not change instantly into a liquid?
- 5 Why does it take longer to boil a liquid than to melt a solid?
- **6** Why do different substances melt at different temperatures?
- 7 Why do different substances have different boiling points?

Questions

- **9.11** Tungsten melts at a much higher temperature than iron. What can you say about the forces between the tungsten atoms, compared to the forces between the iron atoms?
- **9.12** A particular solid material is heated but its temperature does not rise.
 - a What is happening to the solid?
 - **b** Where does the energy go that is being supplied to it?
- 9.13 If a gas is heated, its molecules move faster. Use the kinetic model to make a prediction: What will happen to the pressure that a gas exerts on the walls of its container when the gas is heated?

9.4 Gases and the kinetic theory

We can understand more about gases if we think about the particles of which they are made. We could consider the following questions, for example:

- Why does a gas exert pressure?
- What happens to a gas when it is heated?
- ◆ What happens when a gas is compressed? If you blow up a balloon (Figure 9.9), your lungs provide the pressure to push the air into it. Tie up the balloon and the air is trapped. The pressure of the air inside pushes outwards against the rubber, keeping it inflated. The more air you blow into the balloon, the greater its pressure.

Figure 9.9 Inflating a balloon – as you blow, the pressure of the air inside the balloon increases.

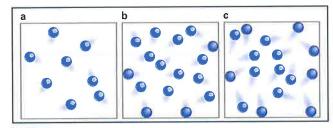
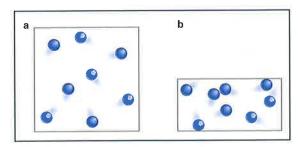

Figure 9.10a shows the particles that make up a gas. The gas is contained in a square box. The volume of the box is the volume of the gas. The gas has mass because each of its particles has mass. If we weighed all the particles individually and added up their masses, we would find the mass of the gas.

Figure 9.10b shows the same box with twice as many gas particles in it. The mass of the gas is doubled, and so is its density. A gas exerts pressure on the walls of its container because its particles are constantly colliding with the walls. They bounce off the walls, exerting a force as they do so. Compare Figures 9.10a and 9.10b: with twice as many particles in b, there are twice as many collisions, so the pressure in b is doubled compared with that in a.


Figure 9.10c shows the same gas at a higher temperature. The particles are moving faster, and as a result they have more kinetic energy. So the higher the temperature of a gas, the faster its particles are moving.

Compressing a gas

Figure 9.11 shows some gas trapped in a box. If the box is made smaller, the volume of the gas decreases.

Figure 9.10 a The particles of a gas move around inside its container, bumping into the sides. **b** Doubling the number of particles means twice the mass, twice the density and twice the pressure. **c** At a higher temperature, the particles move faster. They have more kinetic energy, and this is what a thermometer records as a higher temperature.

Figure 9.11 With the same number of particles in half the volume, in **b** there are twice as many collisions per second with the walls of the container, compared to **a**. The result is twice the pressure in **b** as in **a**.

At the same time, its pressure increases. From the diagram, you can see why this is. The particles of the gas have been squashed into a smaller volume. So they will collide with the walls of the container more frequently, creating an increased pressure. If the gas is compressed to half its original volume, its pressure will be doubled.

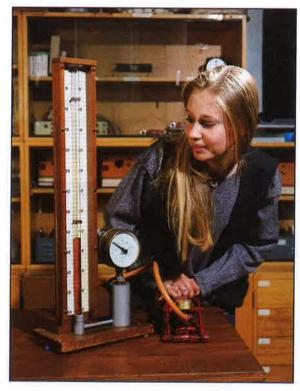
Questions

- **9.14** Look at Figure **9.10a**. If half of the particles of the gas were removed from the container (and nothing else was changed), how would the following properties of the gas change?
 - a density
 - **b** pressure
 - c temperature
- **9.15** Draw diagrams of the particles in a gas to explain why, if the volume of the gas is doubled, its pressure is halved.
- 9.16 Look at Figure 9.11. The gas in b has twice the pressure as the gas in a. How could you change the temperature of the gas in b so that its pressure would be the same as that of the gas in a? Explain your answer.

High-speed collisions

Observing Brownian motion of smoke particles in air allows us to deduce something important about the motion of air molecules. The air molecules are much smaller than the smoke grains – in other words, they are very light, compared to smoke grains – and yet they can cause the smoke grains to move around. The air molecules can only do this if they are moving around very fast. In fact, the molecules of the air around us move at speeds of the order of 500 m/s – that is a little faster than the speed of sound in air.

Now imagine these high-speed molecules rushing around in a room. They collide with the walls, the ceiling, the floor, the furniture, everything. They bounce off every surface, and in doing so they change direction. Each collision thus results in a change of momentum of the air molecule. (Recall from Chapter 3 that momentum = mass × velocity.) Each molecule


that collides with the surface exerts a tiny force. Because there are so many fast-moving particles, and because they collide so frequently with all the surfaces in the room, they exert a large force. This is why a gas like air exerts pressure.

Boyle's law

Figure 9.12 shows a method for investigating what happens when the pressure on a fixed mass of gas is increased. In this apparatus, some air is trapped inside the vertical glass tube. The oil in the bottom of the apparatus can be compressed with a pump, so that it pushes up inside the tube, compressing the air. The volume of the air can be read from the scale. The pressure exerted on it by the oil can be read from the dial gauge.

Increasing the pressure on the gas decreases its volume. Table 9.5 shows some typical results. But can we find a mathematical relationship between the pressure p and the volume V of the gas?

The relationship between *p* and *V* was investigated by Robert Boyle, an English physicist and chemist.

Figure 9.12 Apparatus for increasing the pressure on a gas. A fixed mass of air is trapped inside the tube, and the pressure on it is increased.

Pressure, p/Pa	Volume, V/cm³	Pressure × volume, pV/Pacm³
100	60	6000
125	48	6000
150	40	6000
200	30	6000
250	24	6000
300	20	6000

Table 9.5 Representative results for a Boyle's law experiment, to show their pattern. The temperature of the gas remains constant throughout.

He published his results in 1662. The relationship that Boyle found can be stated in a number of different ways:

- 1 Doubling the pressure has the effect of halving the volume; three times the pressure gives one-third of the volume; and so on.
- 2 The graph of Figure 9.13a shows that increasing pressure leads to decreasing volume.
- **3** The numbers in Table **9.5** also show this relationship. From the last column in the table, we can see that the quantity pressure × volume is constant, so we can write

$$pV = constant$$

4 We can write the same idea in a way that is convenient for doing calculations:

initial pressure × initial volume = final pressure × final volume

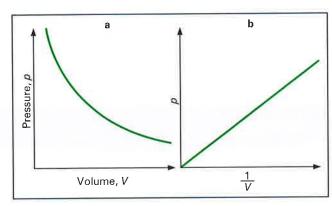
or

$$p_1V_1 = p_2V_2$$

where p_1 and V_1 are one pair of readings of pressure and volume, and p_2 and V_2 are another pair. This equation is easy to memorise, and we shall make use of it in Worked example **9.1**.

5 If one quantity decreases like this as another increases, we say that one is *inversely proportional* to

the other. Using the symbol \propto ('is proportional to'), we can write:


$$p \propto \frac{1}{V}$$
 or $V \propto \frac{1}{p}$

- **6** The graph of Figure **9.13b** shows that plotting p against 1/V gives a straight-line graph, passing through the origin.
- 7 Finally, we can write the relationship in words:

The volume of a fixed mass of gas is inversely proportional to its pressure, provided its temperature remains constant.

This last statement is known as **Boyle's law**.

It is important to understand why Boyle's law includes the phrase 'provided its temperature remains constant'. When a gas is compressed, its temperature rises (because energy is being transferred to the gas), and this tends to make it expand. In the Boyle's law experiment, the trapped air soon loses energy to its surroundings and cools back down to room temperature. While it is hot, its volume is increased. Only when it cools down will we find that it obeys the relationship pV = constant.

Figure 9.13 Two graphs to represent the results of a Boyle's law experiment. **a** The graph of pressure against volume shows that increasing the pressure causes a decrease in the volume. **b** The mathematical relationship between *p* and 1/*V* can be seen from this graph. Since it is a straight line through the origin, we can say that pressure is inversely proportional to volume (and vice versa).

Worked example 9.1

A cylinder contains 50 cm³ of air at a pressure of 120 kPa. What will its volume be if the pressure on it is increased to 400 kPa?

Step 1: Write down the initial and final values of the quantities that we know.

$$p_1 = 120 \text{ kPa}$$

 $V_1 = 50 \text{ cm}^3$
 $p_2 = 400 \text{ kPa}$
 $V_2 = ?$

Step 2: Write down the Boyle's law equation and substitute values.

$$p_1 V_1 = p_2 V_2$$

120 kPa×50 cm³ = 400 kPa× V_2

Step 3: There is only one unknown quantity in this equation (V_2) . Rearrange it and solve.

$$V_2 = \frac{120 \,\mathrm{kPa} \times 50 \,\mathrm{cm}^3}{400 \,\mathrm{kPa}} = 15 \,\mathrm{cm}^3$$

So the volume of the air is reduced to 15 cm³ when it is compressed.

Worked example 9.1 shows how to use the equation $p_1V_1 = p_2V_2$ to find how the volume of a gas changes when the pressure on it is changed. You can use the same equation to work out how the pressure changes when the volume is changed.

Study tip

Notice an important feature of the equation $p_1V_1 = p_2V_2$. It does not matter what units we use for p and V, as long as we use the same units for both values of p (for example, Pa or kPa), and the same units for both values of V (for example, m^3 , dm^3 or cm^3). In question 9.19 below, you are asked to use units that you may not be familiar with: atmospheres for pressure, and litres for volume.

Questions

- **9.17** What is the meaning of the subscripts 1 and 2 in the equation $p_1V_1 = p_2V_2$?
- **9.18** The pressure on 6 dm³ of nitrogen gas is doubled at a fixed temperature. What will its volume become?
- **9.19** A container holds 600 litres of air at a pressure of 2 atmospheres. If the pressure on the gas is increased to 5 atmospheres, what will its volume become? (Assume that the temperature remains constant.)
- **9.20** A gas cylinder has a volume of 0.4 m³. It contains butane at a pressure of 100 kPa and a temperature of 20 °C. What pressure is needed to compress the gas to a volume of 0.05 m³ at the same temperature?

Summary

You should know:

- about changes of state
- the kinetic model of matter
- how temperature affects the kinetic energy of particles
- about Brownian motion
- about evaporation
- S that there are forces between particles
- S the factors that affect evaporation
- ♦ how pressure and volume of a gas are related (Boyle's law).

End-of-chapter questions

- 1 Draw a diagram to show the three states of matter and the changes between them.
- 2 Draw three simple diagrams to show how particles are arranged in a solid, a liquid and a gas.
- 3 Copy and complete the following sentences, writing a suitable word in each gap.
 - a To melt or boil a pure substance, must be supplied.
 - **b** During a change of state, the remains constant.
- 4 Copy and complete the following sentences, writing a suitable word in each gap.
 - a is the change from a liquid to a gas at a temperature below the boiling point.
 - **b** This happens because the particles are most likely to escape from the liquid, causing the temperature of the liquid to
- 5 We cannot see the particles that make up water or air. However, Brownian motion shows us that the particles are moving around.
 - a In a smoke cell, which particles are seen moving?
 - **b** Which particles are causing them to move?
- 6 Copy and complete the following sentences, writing *quickly* or *slowly* in each gap.
 - a A liquid will evaporate more at a lower temperature.
 - **b** A liquid will evaporate more when it has a greater surface area.
 - c A liquid will evaporate more when a draught blows over its surface.
- 7 Boyle's law describes how the volume of a gas depends on its pressure.
 - a Write a word equation for this relationship.
 - **b** Study the following equations. Only **three** are correct. Copy those that are correct.

p/V = constant

pV = constant

 $p_1V_1 = p_2V_2$

 $p \propto V$

 $p \propto 1/V$

- 8 For each of the following statements, name the state of matter being described:
 - a Expands to fill the volume of its container.

[1]

b Has a fixed size and shape.

[1]

c Has a fixed volume but takes up the shape of its container.

- [1]
- a "The particles are packed closely together. They can vibrate about their fixed positions but they cannot move about within the material." Which state of matter is being described here?
- [1]

b Write a similar description of the particles that make up a gas.

- [2]
- 10 A small amount of smoke is blown into a small glass box. A bright light is shone into the box. When observed through a microscope, specks of light are seen to be moving around at random in the box.
 - a What are these bright specks of light?

[1]

b What evidence does this provide for the kinetic model of matter?

[2]

- 11 A student pours a small amount of ethanol into a beaker. She places the beaker on an electronic balance to find its mass, and adds a thermometer to measure the temperature of the liquid. Two hours later, she returns to her experiment. She notices that the mass of the beaker and its contents has decreased. She can also see that the temperature of the ethanol has decreased. She guesses that some of the ethanol has evaporated from the beaker.
 - a Describe how evaporation can explain the decrease in mass.

[2]

b Describe how evaporation can explain the decrease in temperature.

[3]

- 12 These questions concern the behaviour of gases.
 - a A rigid container holds a fixed volume of air. The container is heated. How will the pressure of the air change?

[1]

b A container is fitted with a piston that allows the pressure on the air in the container to be changed. The piston is pulled outwards so that the volume of the air increases. How will the pressure of the air change?

[1]

- 13 A small container of water is placed in an oven at 90 °C. The water soon disappears.
 - a What name is given to process by which a liquid becomes a gas at a temperature below its boiling point?

[1]

b Why must energy be supplied to a liquid to turn it into a gas? In your answer, refer to the particles of the liquid and the forces between them.

[2]

14 A container holds 20 m³ of air at a pressure of 120 000 Pa. If the pressure is increased to 160 000 Pa, what will the volume of the gas become? Assume that its temperature remains constant.

[3]

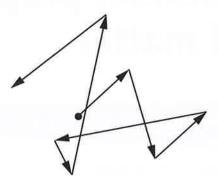
15 Solids, liquids and gases have different properties. The list below gives some of them.

completely fills the container shape { fills the container from the bottom

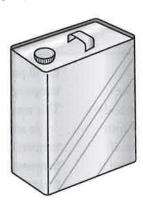
move around, close together molecules { move around, far apart vibrate about a fixed position

Copy the table and use descriptions from the list to complete it. Any description may be used more than once if appropriate. Two spaces have been filled in to help you.

		Shape	Molecules
a	Solid		
b	Liquid		move around, close together
c	Gas	completely fills the container	


[2]

[1]


[1]

[Cambridge IGCSE® Physics 0625/23, Question 2, October/November, 2012]

16 a The diagram represents the path taken in air by a smoke particle, as seen in a Brownian motion experiment. The smoke particles can be seen through a microscope, but the air molecules cannot.

- i State what causes the smoke particles to move like this.
 - ii What conclusions about air molecules can be drawn from this observation of the smoke particles? [2]
- **b** A can, containing only air, has its lid tightly screwed on and is left in strong sunlight.

- i State what happens to the pressure of the air in the can when it gets hot.
- [3]

[1]

[1]

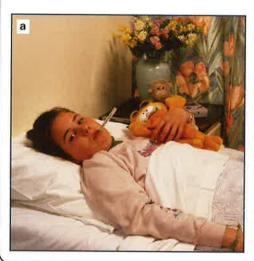
ii In terms of molecules, explain your answer to b i.

[Cambridge IGCSE® Physics 0625/33, Question 3, October/November, 2010]

10 Thermal properties of matter

In this chapter, you will find out:

- how to measure temperature and how thermometers work
- S how thermometers are designed
 - about the thermal expansion of solids, liquids and gases
 - about some uses and consequences of thermal expansion
- how energy supplied is related to increase in temperature when a body is heated
- S how to measure specific heat capacity.

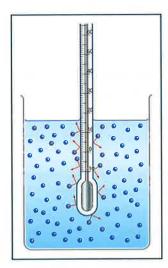

Measuring temperature

When someone is about to bath a baby, she or he fills a tub with water, and can check that it is at body temperature, about 37 °C, by dipping an elbow into the water. The elbow is sensitive to temperature. If the water feels too hot, adding cold water can cool it to the desired temperature. The person is using the fact that there are nerve endings in the skin that are sensitive to temperature. When the water feels neither hot nor cold, it is at the right temperature.

If someone is ill, he or she may have a raised temperature. Another person can test this by touching

the ill person's forehead to try to detect a difference in temperature between him- or herself and the ill person. This may seem rather unscientific, but it works!

In science, we use thermometers to measure temperature. Figure 10.1 shows human body temperature being measured both by a liquid-in-glass thermometer, in which a thin column of mercury expands inside an evacuated glass tube as it gets hotter, and by a liquid-crystal thermometer, in which each segment shows up at a particular temperature. This latter type is much safer, particularly for use with children, who might bite and break a glass thermometer.


Figure 10.1 Measuring human body temperature using **a** a liquid-in-glass thermometer and **b** a liquid-crystal thermometer.

10.1 Temperature and temperature scales

With both of the thermometers shown in Figure 10.1, it is important to wait for a minute or two if you want to see the correct reading. This is because the thermometer has probably been stored somewhere relatively cool, perhaps in a drawer at 20 °C. The patient's temperature will be approximately 37 °C, and it takes a short while for the thermometer to reach this temperature.

This gives us an idea of what we mean by temperature. The thermometer is placed in contact with the patient's body. It has to warm up until it reaches the same temperature as the patient. Energy from the patient is shared with the thermometer until they are at the same temperature. Then you will get the correct reading. (So the thermometer does not tell you the patient's temperature – it tells its own temperature! However, we know that the patient's temperature is the same as the thermometer's.)

Figure 10.2 shows a thermometer measuring the temperature of some hot water. The molecules of the water are rushing about very rapidly, because the water is hot. They collide with the thermometer and share their energy with it. The bulb of the thermometer gets hotter. Eventually, the thermometer bulb is at the same temperature as the water. (We say that the water and the thermometer bulb are in **thermal equilibrium** with one another. Energy is not being transferred from one to the other.)

Figure 10.2 A thermometer placed in hot water is bombarded by the fast-moving water molecules. It absorbs some of their energy. Eventually, it reaches the same temperature as the water and gives the correct reading.

Temperature and internal energy

You can see from this that it can be important to make a careful choice of thermometer. How could you measure the temperature of a small container containing hot water? If you chose a large, cold thermometer and poked it into the water, it might absorb a lot of energy from the water and thus make it much cooler. You would get the wrong answer for the temperature. A better solution might be to use an electronic thermometer with a very small probe. This would absorb less of the energy of the water.

A thermometer thus tells us about the average energy of the particles in the object whose temperature we are measuring. It does this by sharing the energy of the particles. If they are moving rapidly, the thermometer will indicate a higher temperature. Placing a thermometer into an object to measure its temperature is rather like putting your finger into some bath water to detect how hot it is. Your finger does not have a scale from 0 to 100, but it can tell you how hot or cold the water is, from uncomfortably cold to comfortably warm to painfully hot.

Thus the temperature of an object is a measure of the *average kinetic energy* of its particles. Because it is the *average* kinetic energy of a particle, it does not depend on the size of the object. We can compare internal energy and temperature:

- internal energy is the total energy of all of the particles
- **temperature** is a measure of the *average* kinetic energy of the *individual* particles.

So a bath of water at 50 °C has more internal energy than a cup of water at the same temperature, but its individual molecules have the same average kinetic energy as the molecules of the water in the cup.

Study tip

Check that you have understood the difference between internal energy and temperature.

The Celsius scale

Galileo is credited with devising the first thermometer, in 1593 (Figure 10.3). The air inside the flask expanded and contracted as the temperature rose and fell. This made the level of the water in the tube change. This could only indicate changes in temperature over a narrow range, and proved unsatisfactory because water evaporated from the reservoir. Galileo knew that air expands as its temperature

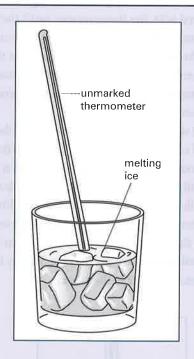
increases. Modern liquid-in-glass thermometers use mercury or alcohol instead of air. These are also substances that expand when they are heated.

Anders Celsius, working in Sweden, devised a more successful thermometer than Galileo's. It had a volume of mercury in an enclosed and evacuated tube, with no chance of liquid loss by evaporation. It was like the much more modern Celsius thermometer shown in Figure 10.4. Celsius also devised a scale of temperature, now known as the Celsius scale. This had two *fixed points*:

 0 °C – the freezing point of pure water at atmospheric pressure ◆ 100 °C – the boiling point of pure water at atmospheric pressure.

Each time he made a new thermometer, Celsius could calibrate it quite simply by putting it first into melting ice and then into boiling water, marking the scale each time. Then he could divide the scale into 100 equal divisions. This process is known as *calibration* of the thermometer. (It is interesting to note that, with his first thermometers, Celsius marked the boiling point of water as 0 degrees and the freezing point as 100 degrees. It was a few years later that one of his collaborators decided that it was better to have the scale the other way up.)

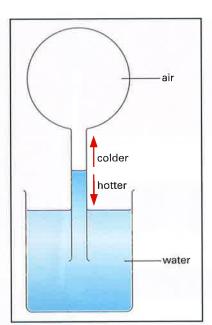
Activity 10.1 Calibrating a thermometer


Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.5 Evaluate methods and suggest possible improvements

Every thermometer must be calibrated (given a scale) before it can be used. The more accurately this is done, the more accurate will be the readings taken from it when it is used. In this activity, you will mark the scale on a blank thermometer and use it to measure some temperatures.


- 1 Place an unmarked thermometer in a beaker containing melting ice. When the reading has settled, mark the scale using sticky tape to indicate the position of 0 °C.
- 2 Place the thermometer in a beaker containing boiling water. When the reading has settled, mark the scale using sticky tape to indicate the position of 100°C.
- 3 Dry the thermometer. Measure the distance between 0 °C and 100 °C along the length of thermometer. Cut a strip of paper of this length. Mark 10 equal divisions along its length and label them from 0, 10, 20, ... up to 100. Mark subdivisions to indicate steps of 1 or 2 °C.
- 4 Attach the scale to the thermometer. From the scale, read the value of room temperature.

5 Place the thermometer in a container of warm water. Read the temperature of the water.

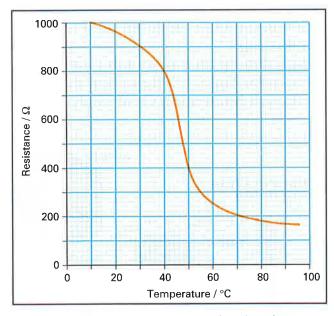
Things to think about

- How precisely can you read the thermometer? To the nearest degree?
- How do your measurements compare with those of other members of the class?
- ◆ Use two ready-calibrated thermometers to measure room temperature and the temperature of the warm water. Do they give the same readings? Why might they differ from each other? Why might they differ from your measurements?

Figure 10.3 The idea behind Galileo's thermometer, the first of all thermometers. It had only a narrow operating range and no scale. As water evaporated and air dissolved in the water, the reading became unreliable.

Figure 10.4 A modern Celsius-scale liquid-in-glass thermometer, with a fixed quantity of mercury sealed in a glass tube.

Questions -


- **10.1** Two buckets contain water at 30 °C. One contains 1 kg of water, and the other contains 2 kg of water. State and explain whether the following quantities are the same or different for the water in the two buckets:
 - a internal energy
 - **b** temperature
 - **c** average energy of a molecule.
- **10.2** What are the **two** fixed points on the Celsius scale?
- **10.3** Write step-by-step instructions for the calibration of a thermometer using the Celsius scale.

10.2 Designing a thermometer

Mercury-in-glass (and alcohol-in-glass) thermometers are used in many different situations. They are attractive for a number of reasons:

- Mercury expands at a steady rate as it is heated. This
 means that the marks on the scale are evenly spaced.
 We say that the scale is linear.
- ◆ The thermometer can be made very sensitive, by making the tube up which the mercury expands very narrow. Then a small change in temperature will push the mercury a long way up the tube. In a typical clinical thermometer, used by doctors, the mercury rises several millimetres for a 1 °C rise in temperature. This makes it possible to measure small changes.
- ◆ A mercury thermometer can have a wide *range*, because mercury is liquid between −39 °C and +350 °C. Some domestic ovens have mercury thermometers that read up to 250 °C.

The problem with mercury thermometers is that they have to be read by eye. An alternative is to use an electronic thermometer. Some of these are based on **thermistors**, which are resistors whose resistance changes by a large amount over a narrow temperature range (see Figure 10.5).

Figure 10.5 The electrical resistance of a thermistor changes over a narrow range of temperatures. This means that it can be used as a temperature probe for an electronic thermometer. However, it will only be sensitive over a narrow range, and its behaviour may be non-linear.

- Thermistors can be very useful, especially as they are robust and can be built into electronic circuits. However, from the graph in Figure 10.5, you can see the following:
- The resistance of a thermistor changes in a nonlinear way, so that the intervals on a scale will not all be equal in size.
- ◆ The range of such a thermometer will be narrow, because the resistance only changes significantly over a narrow range of temperatures. You would need to choose a thermistor whose resistance changes most near the temperature you were trying to measure if you want the thermometer to be sensitive.

A second alternative is to use a **thermocouple**, a device that gives an output voltage that depends on the temperature. Thermocouples are made from pieces of wire made from two different metals. A wire of metal X is joined at each end to wires of metal Y to form two junctions. To use the thermocouple, its ends are connected to a sensitive voltmeter (see Figure 10.6). Then one junction is placed in melting ice at 0 °C while the other is placed in the object whose temperature is to be measured. The voltmeter shows a reading. The greater the voltage produced, the bigger the difference in temperatures between the two junctions. The thermocouple must be calibrated so that the temperature can be deduced from the voltage.

Many electronic thermometers make use of thermocouples (Figure 10.7). The junctions of a thermocouple thermometer can be very small, so that

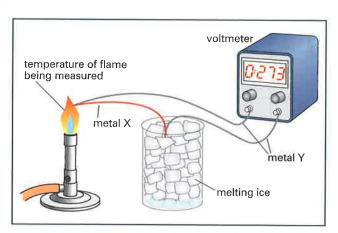



Figure 10.6 Using a thermocouple to measure temperature.

Figure 10.7 This electronic thermometer uses a thermocouple as its probe. You may just about be able to see the thin wires that make up the junction (in the 'eye' of the device). These are connected to a box with electronic circuits that convert the voltage produced to a digital temperature reading.

they are robust, and they do not absorb much energy from the material whose temperature they are measuring. Some combinations of metals give bigger voltages than others, so it is important to choose them carefully.

Thermocouples can be used to measure high temperatures (up to just below the melting point of the metal used). Because they are small, they can heat up and cool down quickly, so they are useful for measuring rapidly varying temperatures.

Thermocouples are used in many gas ovens and heaters that have a pilot flame that burns continuously. One junction is positioned in the flame, giving a voltage of about 20 mV. If the pilot flame goes out, the voltage drops and an electric circuit turns off the gas supply to the burners and the pilot flame.

Study tip

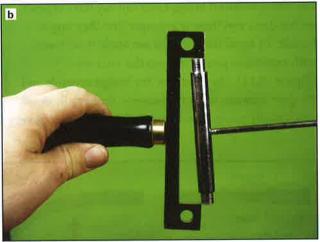
Whenever you use a scientific instrument such as a thermometer, think about how it has been designed to give reliable measurements.

Questions

- **10.4** Look at Figure **10.5**, which shows how the resistance of a thermistor changes with temperature.
 - **a** Over what range of temperatures is the resistance changing most rapidly?
 - **b** Explain why a thermometer that used this thermistor would be less sensitive at 20 °C than at 50 °C.
- **10.5** A thermocouple thermometer is better for measuring rapidly varying temperatures than a mercury-in-glass thermometer. Explain why this is so.

10.3 Thermal expansion

Most substances – solids, liquids and gases – expand when they are heated. This is called **thermal expansion** (the word 'thermal' means 'related to heat'). We have already seen that some types of thermometer make use of the thermal expansion of a liquid. Figure 10.8 shows an experiment that demonstrates that a metal bar expands when heated.


- When it is cold, the iron bar will just fit in the gap in the measuring device.
- ◆ The bar (but not the measuring device) is heated strongly. Now it is too long to fit in the gap – it has expanded.
- When it cools down, the bar contracts and returns to its original length.

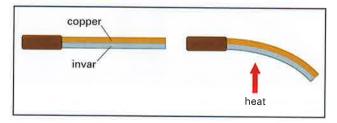
Uses of expansion

Rivets are used in shipbuilding and other industries to join metal plates. A red-hot rivet is passed through holes in two metal plates and then hammered until the ends are rounded (Figure 10.9). As the rivet cools, it contracts and pulls the two plates tightly together.

A metal lid or cap may stick on a glass jar or bottle, and be hard to unscrew. Heating the lid (for example, by running hot water over it) causes it to expand (the

Figure 10.8 In **a**, the metal bar is cold, and fits in the gap in the measuring device. In **b**, it has been heated so that it expands and will no longer fit in the gap.

Figure 10.9 Joining two metal plates using a rivet.


glass expands much less), so that the lid loosens and can be removed.

A steel 'tyre' may be fitted on to the wheel of a railway locomotive while the tyre is very hot. It then cools and contracts, so that it fits tightly on to the wheel.

A bimetallic strip (Figure 10.10) is designed to bend as it gets hot. The strip is made of two metals joined firmly together. One metal expands more rapidly than the other. As the strip is heated, this metal expands rapidly, causing the strip to bend. (The metal that expands more is on the outside of the curve, because the outer curve is longer than the inner one.) These strips are used in devices such as fire alarms and thermostats (which control the temperature of ovens, irons, water heaters, refrigerators, and so on).

Consequences of expansion

The expansion of materials can cause problems. For example, metal bridges and railway lines expand on hot days, and there is a danger that they might buckle. To avoid this, bridges are made in sections, with expansion joints between the sections (Figure 10.11). On a hot day, the bridge expands and the gaps between sections decrease. Railway lines are now usually made from a metal alloy that expands very

Figure 10.10 A bimetallic strip. 'Invar' is a metal alloy that expands very little when it is heated. Copper expands more readily when it is heated. This difference in expansion forces the strip to bend.

Figure 10.11 This truck is about to cross an expansion joint on a motorway bridge. On a hot day, the bridge expands and the interlocking 'teeth' of the joint move closer together.

little. On a concrete roadway, you may notice that the road surface is in short sections. The gaps between are filled with soft pitch, which becomes squashed as the road expands.

Glass containers may crack when hot liquid is placed in them. This is because the inner surface of the glass expands rapidly, before the heat has conducted through to the outer surface. The force of expansion cracks the glass. To overcome this, glass such as Pyrex has been developed that expands very little on heating. An alternative is toughened glass, which has been treated with chemicals to reduce the chance of cracking.

The expansion of gases

Gases expand when they are heated, just like solids and liquids. We can understand this using the kinetic model of matter (see Chapter 9). Figure 10.12 shows some gas in a cylinder fitted with a piston. At first, the gas is cold and its particles press weakly on the piston. When the gas is heated, its particles move faster. Now they push with greater force on the piston and push it upwards. The gas has expanded.

The upward force of the gas is balanced by the downward weight of the piston. So, in this situation, the pressure of the gas has remained constant as it has expanded. If the piston did not move, the *volume* of the gas would remain constant when it was heated but its *pressure* would increase.

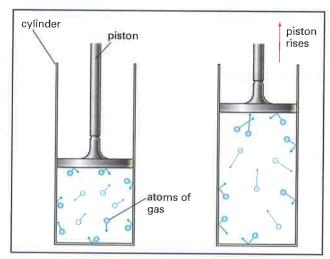


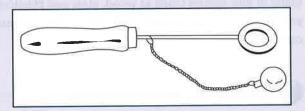
Figure 10.12 A gas expands when it is heated at constant pressure.

Activity 10.2Observing expansion

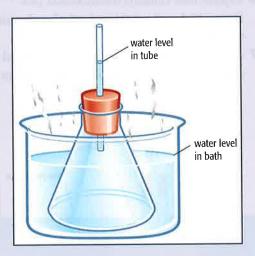
Skills

AO3.3 Make and record observations, measurements and

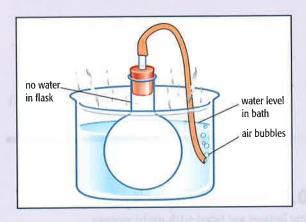
AO3.4 Interpret and evaluate experimental observations and data


Safety

Do not touch the steel ball when it has been heated. There is a risk of scalding if the water bath reaches a temperature over $60\,^{\circ}$ C.


Try out some experiments to observe the expansion of solids, liquids and gases. Use the idea of expansion to explain what you observe.

Here are some possible experiments:


1 Ring and ball. A steel ball will pass easily through a steel ring when it is cold. When it is hot, it will not pass through the ring.

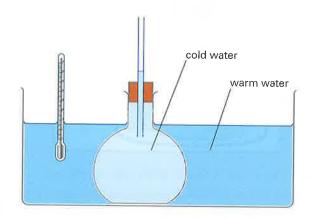
2 Water in a flask. A flask is filled with water and then fitted with a bung and tube. When the flask is placed in a hot water bath, the water rises up inside the tube.

3 Air in a flask. A flask is fitted with a bung and tube. When the flask is placed in a hot water bath, bubbles are seen coming from the end of the tube.

Comparing solids, liquids and gases

Solids, liquids and gases – which expands most for a given rise in temperature?

- ◆ Solids expand most slowly when they are heated. Some, such as Pyrex glass and invar metal alloy, have been designed to expand as little as possible.
- ♦ Liquids generally expand faster than solids.
- Gases expand faster still.

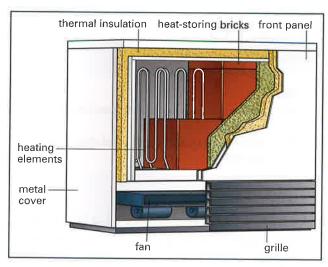

There are some exceptions to this. For example, liquid paraffin expands very rapidly on heating. Petrol (gasoline) also expands rapidly when it is heated. If,

on a hot day, a motorist fills up with petrol from cool underground tanks, the fuel may expand and overflow as it warms up.

When a material expands, its particles (atoms or molecules) do not get any bigger. However, they have more energy, so they can move around more and take up more space. It is difficult for the particles of a solid to push their neighbours aside, so a solid does not expand much. When a gas is heated, its particles move about more rapidly, and it is easy for them to push the walls of their container further apart, so that the gas takes up more space.

Questions

- **10.6** Explain how Galileo's thermometer (see Figure **10.3** earlier in this chapter) makes use of thermal expansion.
- **10.7** An experiment to demonstrate the thermal expansion of water is shown in the diagram.



- **a** Describe and explain what will happen when the flask of cold water is placed in the tank of hot water.
- b How could this experiment be adapted to compare the rates of expansion of water and of liquid paraffin?

10.4 Thermal capacity

Some houses are fitted with night storage heaters. These are electrical heaters that heat up at night, when electricity is cheap. Then, during the day, they remain warm and give out their heat to the room.

Figure 10.13 shows the construction of a night storage heater. The electric heating elements are surrounded by special bricks that store the energy supplied by the electricity. The bricks are made of a material that requires a lot of energy to heat it up. In this way, the bricks store a lot of energy in a small space. We say that the bricks have a high *thermal capacity*. It takes a lot of energy to raise their temperature by a certain amount. The bricks in a storage heater must be quite big if they are to have sufficient thermal capacity to keep a room warm for several hours. Because of their

Figure 10.13 Inside a night storage heater. It is the bricks that store energy.

high thermal capacity, they heat up slowly and they cool down slowly.

The thermal capacity of an object depends on the material it is made of. Metal objects heat up easily – their thermal capacities are low. Objects made of non-metals (such as wood, glass and plastics) and liquids (such as water and oil) have higher thermal capacities.

Q Questions

- 10.8 A cook places a metal baking tray and a ceramic dish in the oven. She notices that the metal tray is soon too hot to touch while the ceramic dish takes longer to get hot. Which object has the greater thermal capacity? Explain your answer.
- **10.9** An electrical storage heater uses bricks to store energy. Explain why brick is a better choice of material than a metal such as steel.

10.5 Specific heat capacity

Suppose that you want to make a hot drink for yourself and some friends. You need to boil some water. You will be wasting energy if you put too much water in the kettle or pan. It is sensible to boil just the right amount. Also, if the water from your tap is really

cold, it will take longer, and require more energy, to reach boiling point.

So the amount of energy you need to supply to boil the water will depend on two facts:

- 1 the mass of the water
- 2 the increase in temperature.

In order to calculate how much energy must be supplied to boil a certain mass of water, we need to know one other fact:

3 it takes 4200 J to raise the temperature of 1 kg of water by 1 °C.

Let us assume that the cold water from your tap is at 20 °C. You have to provide enough energy to heat it to 100 °C, so its temperature must increase by 80 °C. Let us also assume that you need 2 kg of water for all the drinks. The amount of energy required to heat 2 kg of water by 80 °C is therefore:

energy required =
$$2 \times 4200 \times 80$$

= $672000 \text{ J} = 672 \text{ kJ}$

Another way to express the third fact above is to say that the specific heat capacity of water is 4200 J per kg per °C or 4200 J/(kg °C).

In general, the **specific heat capacity (s.h.c.)** of any substance (not just water) is defined as shown.

Key definition

specific heat capacity – the energy required per kilogram and per degree Celsius to raise the temperature of a substance.

The equation above for the amount of energy required to heat the water for our drinks can be changed into a general formula, which can be written in both words and symbols as follows:

energy required = mass
$$\times$$
 specific heat capacity
 \times increase in temperature
 energy = $mc\Delta T$

The symbols used here are: m = mass, c = specific heat capacity and $\Delta T = \text{increase}$ in temperature.

Study tip

Take care here! The Greek letter Δ (capital delta) is not a separate quantity in this equation. Instead, T stands for temperature and ΔT stands for an *increase* in temperature. We could write this as increase in temperature = $T_2 - T_1$ or increase in temperature = $T_{\rm final} - T_{\rm initial}$, but ΔT is simpler.

Worked example 10.1 shows how to use this formula in more detail. There is more about the meaning of specific heat capacity (s.h.c.) after Worked example 10.1.

Worked example 10.1

A domestic hot water tank contains 200 kg of water at 20 °C. How much energy must be supplied to heat this water to 70 °C? (Specific heat capacity of water = $4200 \text{ J/(kg} \,^{\circ}\text{C)}$.)

Step 1: Calculate the required increase in temperature.

increase in temperature
=
$$70 \,^{\circ}\text{C} - 20 \,^{\circ}\text{C} = 50 \,^{\circ}\text{C}$$

Step 2: Write down the *other* quantities needed to calculate the energy.

mass of water =
$$200 \text{ kg}$$

specific heat capacity of water
= $4200 \text{ J/(kg} ^{\circ}\text{C)}$

Step 3: Write down the formula for energy required, substitute values, and calculate the result.

energy required

= mass × specific heat capacity × increase in temperature

 $= 200 \,\mathrm{kg} \times 4200 \,\mathrm{J/(kg}\,^{\circ}\mathrm{C}) \times 50 \,^{\circ}\mathrm{C}$

 $= 42\,000\,000\,\mathrm{J}$

 $=42\,\mathrm{MJ}$

So 42 MJ are required to heat the water to 70 °C.

The meaning of s.h.c.

Energy is needed to raise the temperature of any material. The energy is needed to increase the kinetic energy of the particles of the material. In solids, they vibrate more. In gases, they move about faster. In liquids, it is a bit of both.

We can compare different materials by considering standard amounts (1 kg), and a standard increase in temperature (1 °C). Different materials require different amounts of energy to raise the temperature of 1 kg by 1 °C. In other words, they have different specific heat capacities. Table 10.1 shows the values of s.h.c. for a variety of materials.

From the table, you can see that there is quite a wide range of values. The s.h.c. of steel, for example, is one-tenth that of water. This means that, if you supplied equal amounts of energy to 1 kg of steel and to 1 kg of water, the steel's temperature would rise ten times as much.

Study tip

The units of s.h.c., J/(kg°C), will remind you of how to calculate this quantity. Divide the number of joules by the mass and by the temperature change.

Type of material	Material	Specific heat capacity/J/(kg°C)		
Metals	steel	420		
	aluminium	910		
	copper	385		
	gold	300		
	lead	130		
Non-metals	glass	670		
	nylon	1700		
	polythene	2300		
	ice	2100		
Liquids	water	4200		
	sea water	3900		
	ethanol	2500		
	olive oil	1970		
Gases	air	1000		
	water vapour	2020 (at 100°C)		
	methane	2200		

Table 10.1 Specific heat capacities of a variety of materials.

The s.h.c. of water

Water is an unusual substance. As you can see from Table 10.1, it has a high value of s.h.c. compared to other materials. This has important consequences:

- It takes a lot of energy to heat up water.
- Hot water takes a long time to cool down.

The consequences of this can be seen in our climates. In the hot months of summer, the land warms up quickly (low s.h.c.) while the sea warms up only slowly. In the winter, the sea cools gradually while the land cools rapidly. People who live a long way from the sea (in the continental interior of North America or Eurasia, for example) experience freezing winters and very hot summers. People who live on islands and in coastal areas (such as western Europe) are protected from climatic extremes because the sea acts as a reservoir of heat in the winter, and stays relatively cool in the summer.

Measuring s.h.c.

One method for measuring the specific heat capacity of a metal is shown in Figure 10.14a. The block of aluminium has a mass of 1 kg. It is heated by a small electric heater, which supplies 50 J every second (its power is 50 W). The thermometer shows the temperature rise of the block.

One approach is to heat the block for a certain length of time, and find the temperature rise. Knowing the time and the power of the heater, you can work out how much energy has been supplied. Then, knowing the temperature rise and the mass of the block, you can calculate the s.h.c.

A better approach is to record the temperature every ten seconds or so, and then plot a graph (Figure 10.14b) to show the rate at which it is rising. From the slope of the graph, you can then work out how much the temperature rises every second. This is the temperature rise produced by 50 J of energy, and now you can work out the s.h.c.

It is important to evaluate the procedure being used, to judge how accurate the final result is likely to be. The metal block should be insulated, to prevent energy escaping; but some will still escape. Also, some energy is used in heating the heater itself, rather than the block. Both factors mean that the energy supplied is greater than the energy that heats the block, so the final answer

Figure 10.14 Measuring the specific heat capacity of aluminium. a The 1 kg aluminium block is heated by an electric heater, and its temperature is recorded at regular intervals. The block is covered in insulating material during the experiment, to reduce heat losses. A small amount of oil fills the gap between the thermometer and the block, ensuring that there is good thermal contact between them. The thermometer then gives reliable readings of the block's temperature. b This graph shows how the block's temperature increases. As the temperature rises, more heat escapes to the surroundings and the temperature rises more slowly.

will be too big. Another problem is that the block must not be heated too quickly. It takes time for the heat to conduct through the metal. It is desirable for the whole block to heat up at the same time, otherwise the thermometer will only indicate the temperature of part of the block.

Activity 10.3 Measuring s.h.c.

Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- A03.2 Plan experiments and investigations
- AO3.3 Make and record observations, measurements and estimates
- AO3.4 Interpret and evaluate experimental observations and data
- AO3.5 Evaluate methods and suggest possible improvements

Safety

The electrical heater will be hot when it is switched on. The metal block will also become hot when heated and should be moved using tongs.

Measure the specific heat capacity of a metal in the form of a block. You will be supplied with a 1 kg cylindrical metal block and a 36 W electrical heater that fits in a hole in block.

- 1 Read the section called 'Measuring s.h.c.' above.
- **2** Plan your experiment. Write down what you will do in a series of steps.
- 3 Check your plan with your teacher and carry it out.
- 4 At the end, write up your experiment and suggest any improvements you could make to its design.

Questions -

- **10.10** The specific heat capacity of steel is 420 J/(kg°C).
 - **a** How much energy is required to heat 1 kg of steel by 20 °C?
 - **b** How much energy is required to heat 5 kg of steel by 20 °C?
- 10.11 A beaker contains 1 kg of water at 20 °C. A student heats a 1 kg block of aluminium to 100 °C and then drops it in to the water. After a short while, the water and the block both reach a temperature of 38 °C.
- The student said that this shows that water has a greater specific heat capacity than aluminium. Was he correct? Explain your answer.
- **10.12** A thermocouple can be used as a thermometer. Such a thermometer can measure rapidly varying temperatures because of its small thermal capacity.
 - **a** Explain why a thermocouple has a small thermal capacity.
 - **b** Explain why this makes it suitable for measuring rapidly varying temperatures.

10.6 Latent heat

Energy must be supplied to a substance to melt it or to boil it – in other words, to make it change state. This energy does not increase the substance's temperature, and for this reason it is known as **latent heat** (the word 'latent' means 'hidden'). As we saw in section **9.3**, this energy is needed to break the bonds between particles.

The energy needed to change a liquid into a gas is called the *latent heat of vaporisation*. The energy needed to change a solid into a liquid is called the *latent heat of fusion*. (Here, the word 'fusion' means 'melting'.) To compare different substances fairly, we measure the energy required to change the state of 1 kg of the substances. (Here, as for s.h.c., we use the word 'specific' to mean that it relates to unit mass, that is, 1 kg.) So **specific latent heat** is defined as shown.

Key definition

specific latent heat of vaporisation – the energy per kilogram required to cause a substance to change state from liquid to gas at its boiling point. specific latent heat of fusion – the energy per kilogram required to cause a substance to change state from solid to liquid at its melting point.

If we know the mass of a substance, we can calculate how much energy is needed to melt it or boil it. A general formula can be written in both words and symbols as follows:

energy required = mass \times specific latent heat energy = mL

The symbols used are: m = mass and L = specific latent heat.

This equation can be used for both fusion (melting) and vaporisation (boiling). Note that this equation tells us the energy that must be supplied when the substance has already been heated to its melting or boiling point.

Worked example 10.2

A cooking pot contains 0.80 kg of water at 100 °C. How much energy must be supplied to boil all of the water so that the pot is dry? The specific latent heat of vaporisation of water is 330 kJ/kg.

We know the values of m and L, so we can use the equation:

energy =
$$mL$$

= $0.80 \times 330 = 264 \text{ kJ}$

Note that the answer is in kJ because L is given in kJ/kg.

Measuring latent heat

To determine the specific latent heat of a substance, 1 kg of the substance must be heated at its melting or boiling point until it entirely changes state. The amount of energy supplied must be measured. Then we have:

specific latent heat =
$$\frac{\text{energy supplied}}{\text{mass}}$$

To measure the specific latent heat of fusion of ice, a measured mass of ice at 0 °C is added to warm water in a well-insulated copper container. When the ice has entirely melted, the temperature of the water is measured. Knowing the specific heat capacities of water and copper, the energy they have lost to the ice can be calculated. This is the latent heat, and the energy per kilogram can be calculated.

Similarly, water can be boiled using an electric heater of known power. The mass of water that boils away is measured, and the energy supplied by the heater is calculated.

Study tip

Remember that there is no temperature change during melting and boiling. That is why the unit of specific latent heat does not include °C.

Activity 10.4 Measuring the specific latent heat of fusion of ice

Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- AO3.3 Make and record observations, measurements and estimates
- A03.4 Interpret and evaluate experimental observations and data
- AO3.5 Evaluate methods and suggest possible improvements

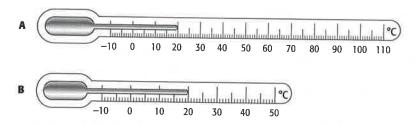
You can measure the specific latent heat of ice as it melts to become water.

1 Place an insulated container on a balance and record its mass (or zero the balance).

- 2 Place about 20 g of ice at 0 °C in the container. Record the reading on the balance.
- 3 Pour about 200 g of water into the container. Record the reading on the balance. (These readings will allow you to determine the mass of the ice and of the water.)
- 4 Stir the mixture of ice and water. Put the lid in place. Record the temperature of the mixture.
- 5 Read the temperature every minute or two. Record the temperature of the water when it reaches its lowest value (or when it starts to rise).
- 6 Calculate the decrease in temperature of the water.
- 7 Calculate the energy lost by the water. (Specific heat capacity of water = 4200 J/(kg °C).) This is the energy gained by the ice as it melts, and so you can calculate its specific latent heat.
- 8 Think about the experiment. Is your result likely to be an over-estimate or an under-estimate?

Questions

- **10.13** Explain why the definition of specific latent heat of fusion includes the phrase '... at its melting point'.
- **10.14** It takes 4500 J to turn 2.0 g of water at 100 °C into steam. Calculate the specific latent heat of vaporisation of water.
- 10.15 Use the kinetic (particle) model of matter to explain why the specific latent heat of vaporisation of water is much greater than the specific latent heat of fusion of ice.


Summary

You should know:

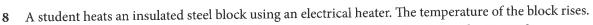
- about thermometers and temperature scales
- - about thermal expansion and its uses
 - the meaning of thermal capacity
- ♦ the meaning of specific heat capacity and specific latent heat.

End-of-chapter questions

- 1 Thermometers are used to measure temperature.
 - a Explain how a liquid-in-glass thermometer works.
 - **b** Every temperature scale must have at least two fixed points. What are the fixed points on the Celsius scale?
- 3 2 The diagram shows two liquid-in-glass thermometers.

- a Which has the greater range? Explain how you can tell.
- **b** Which is more sensitive? Explain how you can tell.
- 3 Copy and complete the sentence below, writing *solids*, *liquids* and *gases* in the correct spaces. When materials are heated, as a rule, expand more slowly than, and these expand more slowly than
- Copy and complete the sentence below, choosing the correct word from each pair. There are two correct versions write down both of them.
 It takes more / less energy to raise the temperature of a body with a smaller / greater heat capacity.
- **S** 5 Write definitions of the following quantities:
 - a specific heat capacity
 - **b** specific latent heat of fusion
 - c specific latent heat of vaporisation.
 - **6** Copy and complete each of the following symbol equations. Then write each as a word equation to show the meaning of each symbol. Give the unit of each quantity.
 - **a** energy = $mc\Delta T$
 - **b** energy = mL
 - A student is using a thermometer to measure temperatures in a laboratory. The thermometer contains mercury. As the temperature increases, the length of the mercury column in the thermometer increases.
 - a Explain why the mercury column becomes longer.

b The thermometer measures temperatures on the Celsius scale. The table gives details of the **two** fixed points of the scale. Copy and complete the table.


	Definition	Value	
Lower fixed point	melting point of pure ice		
Upper fixed point		100°C	

c Give another property of a material that varies with temperature and may be used to measure temperature.

[1]

[1]

[2]

- a The heater supplies energy to the block. In what form does the block store this energy?
- [1]
- The student then heats a second block, made of copper. The heater supplies energy at the same rate as before. The temperature of this block rises faster than that of the steel block. Which block has the greater thermal capacity? Explain your answer.
- [2]

A student is investigating two thermometers. She notices that their scales are marked differently.

- ◆ Liquid-in-glass thermometer: scale from −10 °C to +110 °C.
- ◆ Thermocouple thermometer: scale from −200 °C to +450 °C.
- a Which thermometer has the greater range?

[1]

The student places both thermometers in pure, melting ice. Each shows that the temperature is 0 °C.

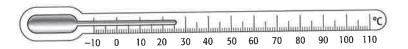
State another temperature at which you would expect the two thermometers to give the same reading. Explain your answer.

[2]

She then places the two thermometers in a beaker of warm water. The liquid-in-glass thermometer shows that the temperature is 45.5 °C. The thermocouple thermometer reads 43 °C.

c Which thermometer is more sensitive? Explain how you know.

[2]


d Suggest why the two thermometers do not indicate the same temperature when they are placed in the beaker of water.

[2]

10 Willem has to measure the specific heat capacity of copper. He has a copper block, which he heats with an electrical heater. The heater supplies energy to the block at a rate of 50 J each second.

Willem records the temperature of the block. Then he switches on the heater for exactly 10 minutes.

- a What two other measurements will he require in order to calculate the specific heat capacity of steel? [2]
- **b** Explain why the block must be well insulated if he is to obtain an accurate result. [1]
- [1] If the block is poorly insulated, will Willem's result be too high or too low?
- 11 The liquid-in-glass thermometer shown has a scale from -10 °C to 110 °C.

- a Two of the temperatures marked on the thermometer are known as fixed points. State the values of these fixed points (°C).
 - [1]

- The bulb of the thermometer shown is put into some boiling water.
 - What happens to the liquid in the bulb when its temperature is raised?
 - What is seen happening to the liquid in the capillary tube when the bulb is put in the boiling water?

[3]

On a certain day in a cold country, the air temperature is $-12\,^{\circ}$ C. Copy the diagram and use an arrow to show approximately where the surface of the liquid will be at this temperature.

[1]

[Cambridge IGCSE® Physics 0625/22, Question 6, May/June, 2012]

12	a	i	Draw a labelled diagram of the apparatus you would use to measure the specific heat capacity			
			of a liquid. If you choose an electrical method, you must include the circuit.	[3]		
		ii	List the quantities you would need to measure, or previously know, in order to calculate the	r- 1		
			specific heat capacity of the liquid.	[3]		
b Some sea water has a specific heat capacity of 3900 J/(kg °C) and a boiling point of 100.6 °C.						
		i	Calculate the energy required to raise the temperature of 0.800 kg of this sea water from 12.0 °C			
			up to its boiling point. State the equation that you use.			
		ii The energy to raise the temperature in b i is supplied at the rate of 620 W. Calculate the time taker				
			raise the sea water to its boiling point.	[2]		
			[Cambridge IGCSE® Physics 0625/33, Question 6, October/November, 2011]			

11 Thermal (heat) energy transfers

In this chapter, you will find out:

- how to demonstrate conduction, convection and radiation
- - how to explain convection and radiation
 - the differences between good and bad emitters of radiation
 - about applications and consequences of thermal (heat) energy transfer.

Warming up, keeping cool

Mammals are warm-blooded, with a body temperature of about 35–40 °C. This is because mammals are active. A carnivore may have to sprint to catch its prey. A herbivore may have to graze all day, and run to avoid carnivores. Muscles work much better at higher temperatures because the reactions that release energy go faster. People are mammals. If you have camped out overnight, you may have had difficulty getting your muscles to start working when you wake up on a cold morning.

There are problems with being warm-blooded. The polar bear (Figure 11.1) lives in a very cold climate. To

Figure 11.1 A polar bear.

avoid the constant danger of freezing to death, polar bears have thick waterproof fur, so heat cannot easily escape. They are also very bulky, with a relatively small surface area compared to their volume. They have a lot more 'inside' than 'outside', and so they find it easier to retain their body heat.

Grizzly bears also live in cold areas, and they too are bulky. Bears that live closer to the equator, such as the European brown bear, tend to be much smaller. They do not have such problems with retaining heat.

African elephants (Figure 11.2) have the opposite problem. They are large animals living in a hot climate, and they are in danger of over-heating if they are too active. To cool off, they use their large ears. On a hot day, more blood flows through the veins in their ear flaps. This warms the air nearby, so heat escapes by convection. Flapping the ears increases the rate of heat loss. Wallowing in mud can also be cooling. As water evaporates from the elephant's skin, it carries energy away.

All creatures have ways of regulating their body temperatures. They make use of all the different ways in which heat moves around: conduction, convection, radiation and evaporation.

Figure 11.2 An African elephant.

11.1 Conduction

As we discussed in Chapter 6, thermal (heat) energy is energy transferring from a hotter place to a colder place – in other words, from a higher temperature to a lower temperature. Thermal energy requires a *temperature difference* if it is to be transferred. In this chapter we look at the various ways in which thermal energy is transferred. We start with **conduction**.

Lying on the table are two spoons: one is metal, the other is plastic. You pick up the metal spoon – it feels cold. You pick up the plastic spoon – it feels warm. In fact, both are at the same temperature, room temperature, as a thermometer would prove to you. How can this be? What you are detecting is the fact that metals are good conductors of heat, and plastics are poor conductors of heat. Figure 11.3 shows what is going on.

- a When your finger touches a metal object, heat is conducted out of your finger and into the metal. Because metal is a good **conductor**, heat spreads rapidly through the metal. Heat continues to escape from your finger, leaving it colder than before. The temperature-sensitive nerves in your finger tip tell your brain that your finger is cold. So you think you are touching something cold.
- When you touch a plastic object, heat conducts into the area that your finger is in direct contact with.
 However, because plastic is a good insulator, the heat travels no further. Your finger loses no more

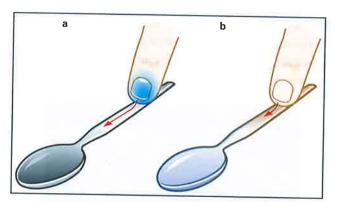


Figure 11.3 Metals feel cold, plastics feel warm. a Touching a piece of metal. Heat flows from your finger and into the metal. Because metals are good conductors of heat, heat continues to escape from your finger. Your finger gets colder. b Touching a piece of plastic. A small amount of heat conducts into the plastic. But it can go no further, because plastics are good insulators. Your finger stays warm.

heat and remains warm. The message from the nerves in your finger tip is that your finger is warm. So you think you are touching something warm. (Note that the nerves in your finger tell you how hot your finger is, not how hot the object is that you are touching! This is similar to our discussion of thermometers in Chapter 10. A thermometer in water indicates its own temperature, and we have to assume that the temperature of the water is the same as this.)

Table 11.1 compares conductors and insulators. You can see that, in general, metals are good conductors of heat while non-metals are poor conductors.

Demonstrating conduction

Figure 11.4 shows one way to compare different metals. The metal rods are all the same size. Each has a blob of wax at one end. They are all heated equally at the other end. The best conductor is the metal on which the wax melts first.

Figure 11.5 shows how to demonstrate that water is a poor conductor of heat. A lump of ice is trapped at the bottom of the test tube, held in place by a piece of wire gauze. The water is heated close to the mouth of the tube. The water boils, while the ice remains frozen. Heat has not conducted down to the bottom of the tube. The water there remains cold and the ice does not melt.

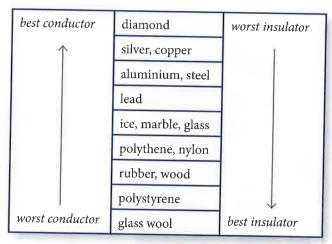
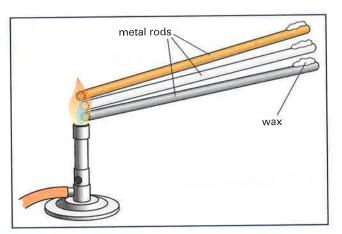
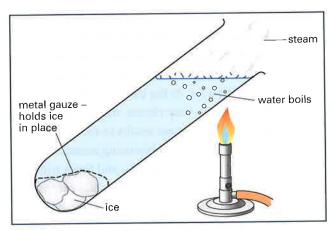




Table 11.1 Comparing conductors of heat, from the best conductors to the worst. A bad conductor is a good insulator. Almost all good conductors are metals; polymers (plastics) are at the bottom of the list. Glass wool is an excellent insulator because it is mostly air.

Figure 11.4 An experiment to show which metal is the best conductor of heat.

Figure 11.5 Although the water at the top of the tube is boiling, the ice at the bottom remains solid.

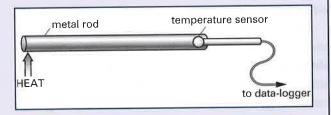
Activity 11.1 Investigating conduction

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.3 Make and record observations, measurements and estimates

Safety


The metal rods will be too hot to touch when heated. Wear eye protection when using a Bunsen burner.

Try out two experiments that involve the conduction of heat.

Comparing metals

1 Attach a temperature sensor to one end of a metal rod.

- 2 Heat the rod at the opposite end.
- 3 Repeat this for rods made of different metals. Which metal heats up most quickly?

Water is an insulator

Look at Figure 11.5 in the text.

- 1 Use a small piece of metal gauze to hold some ice at the bottom of a tube.
- 2 Three-quarters fill the tube with water.
- 3 Heat the water near the top of the tube.

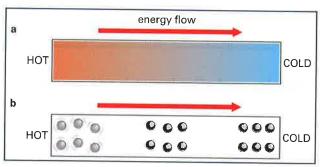
Why does the ice remain solid?

Questions

- **11.1 a** Name a good conductor of heat (a thermal conductor).
 - **b** Name a good thermal insulator.
- **11.2** What is needed for heat to flow through a conductor?
- **11.3** Look at Table 11.1. Which will feel colder to the touch, marble or polystyrene?

Explaining conduction in metals and non-metals

Both metals and non-metals conduct heat. Metals are generally much better conductors than non-metals. We need different explanations of conduction for these two types of material.


We will start with *non-metals*. Imagine a long glass rod (Figure 11.6a). One end is being heated, the other end is cold. There is thus a temperature difference between the two ends, and heat flows down the rod. What is going on inside the rod?

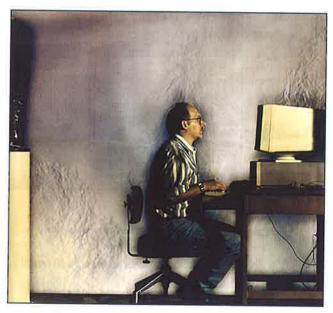
We will picture the atoms that make up the glass as shown in Figure 11.6b. (They are shown as being identical, and regularly arranged, although they are not really like this.) At the hot end of the rod, the atoms are vibrating a lot. At the cold end, they are vibrating much less. As they vibrate, the atoms jostle their neighbours. This process results in each atom sharing its energy with its neighbouring atoms. Atoms with a lot of energy end up with less, and those with a little end up with more. The jostling gradually transfers energy from the atoms at the hot end to those at the cold end. Energy is steadily transferred down the rod, from hot to cold.

This is the mechanism by which poor conductors (such as glass, ice and plastic) conduct heat. It is also the mechanism in diamond, where the carbon atoms are tightly bonded to their neighbours. Any slight vibration of one atom is rapidly shared with its neighbours, and soon spreads through the whole piece of material.

However, *metals* are good conductors for another reason. In a metal there are particles called **electrons** that can move about freely. Electrons are smaller than atoms, and they are the particles that carry energy when an electric current flows through a metal. They also carry energy when heat is transferred through a metal.

Finally, *liquids* can also conduct heat, because the particles of which they are made are in close contact with one another. However, convection (see section 11.2 below) is often more important than conduction in the transfer of heat through a liquid.

Figure 11.6 Conduction of heat in non-metals. **a** A glass rod, heated at one end and cooled at the other. Heat travels from the hot end to the cold end. **b** Energy is transferred because the vibrating atoms jostle one another. This shares energy between neighbouring atoms. The result is a flow of energy from the hot end to the cold end.


Activity 11.2 Investigating conduction using thermocolour film

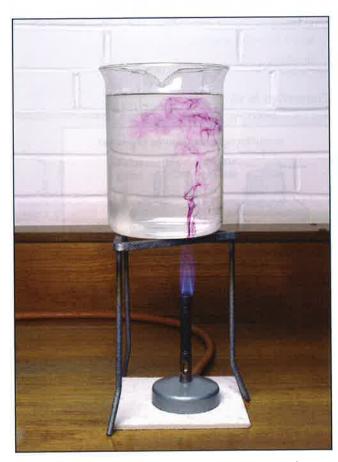
Use thermocolour film to investigate thermal conduction.

11.2 Convection

'Hot air rises.' This is a popular saying. It is one of the few ideas from physics that almost everyone who has studied a little science can remember. Figure 11.7 is a photograph made using a technique that shows up currents in the air. You can see hot air rising from the heater, from the computer, and even from the man.

When air is heated, its density decreases (it expands). Since it is less dense than its surroundings, it then floats upwards (just as a cork floats upwards if you hold it under water and then release it). Think about a hot air balloon. If it is to 'fly', the hot air in the balloon, plus the balloon fabric itself, plus the basket that hangs below, complete with occupants, must altogether have a density less than that of the surrounding colder air.

Figure 11.7 Warm air rises above any object that is warmer than its surroundings. In this office scene, there is a heater (lower left) that is producing warm air. Currents also rise above the computer and the operator.

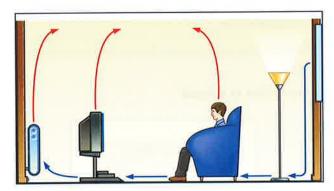

The rising of hot air is just one example of **convection**. Hot air can rise because air is a fluid, and convection is a phenomenon that can be observed in any fluid (liquid or gas).

Demonstrating convection

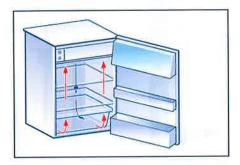
Figure 11.8 shows how a convection current can be observed in water. Above the flame, water is heated and expands. Now its density is less than that of the surrounding water, and it floats upwards. The purple dye shows how it moves. Colder water, which is more dense, flows in to replace it.

A *convection current* is a movement of a fluid that carries energy from a warmer place to a cooler one. This highlights an important difference between convection and conduction.

 In convection, energy is transferred through a material from a warmer place to a cooler place by the movement of the material itself.


Figure 11.8 Because water is clear and colourless, it can be difficult to see how the water moves to form a convection current. Crystals of potassium manganate(vii) act as a purple dye to show up the movement of the water.

 In conduction, energy is transferred through a material from a warmer place to a cooler place without the material itself moving.


Convection currents at work

Convection currents help to share energy between warm and cold places. If you are sitting in a room with an electric heater, energy will be moving around the room from the heater as a result of convection currents, rising from the heater. You are likely to be the source of convection currents yourself, since your body is usually warmer than your surroundings (see Figure 11.9). Many biting insects make use of this effect. For example, bed bugs crawl across the bedroom ceiling. They can detect a sleeping person below by finding the warmest spot on the ceiling. Then they drop straight down on the sleeper. This is a lot easier than crawling about on top of the bedding.

Cold objects also produce convection currents. You may have noticed cold water sinking below an ice cube in a drink. In a refrigerator, the freezing surface is usually positioned at the top and the back, so that cold air will sink to the bottom. Warm air rises to be re-chilled (see Figure 11.10).

Figure 11.9 Convection currents rise above the warm objects in a room.

Figure 11.10 In a fridge, cold air sinks from the freezing compartment. If the freezer was at the bottom, cold air would remain there, and the items at the top would not be cooled.

Study tip

Look out for other everyday examples of convection at work.

Explaining convection

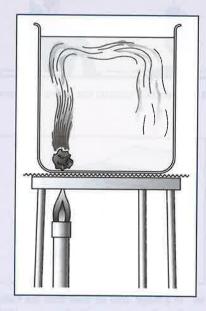
We have already seen that convection results from the *expansion* of a fluid when it is heated. Expansion means an increase in volume while mass stays constant – hence, density decreases. A less dense material is lighter, and is pushed upwards by the surrounding denser material.

The particles in the hotter fluid have more kinetic energy – they move around faster. As they flow from place to place, they take this energy with them.

Convection is the main method of thermal transfer of energy in fluids. Although thermal energy can be conducted through a liquid, this is generally a slow process compared with convection when the fluid itself moves, carrying energy with it.

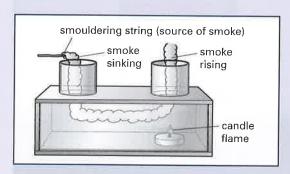
Activity 11.3 Convection experiments

Skills


AO3.3 Make and record observations, measurements and estimates

Safety

Wear eye protection when using a Bunsen burner. Wear protective gloves when handling potassium manganate(VII).


Try out some experiments that show convection at work.

Convection in a liquid

- 1 Fill a beaker with water.
- 2 When the water is still, use tweezers to place a small crystal of potassium manganate(vII) on the bottom of the beaker, at one side.
- 3 Use a Bunsen burner to heat the water gently, just below the crystal. The colour moves to show how the water is flowing.

Convection in air

- 1 Set up the experiment as shown.
- 2 Light the candle. The candle flame causes warm air to rise up the right-hand chimney. Cold air flows down the left-hand chimney.
- **3** Use a smoking length of string to show up the flow of air.

Questions

- **11.4** 'A thermal (heat) energy transfer by means of the motion of a fluid.' Is this a description of *conduction* or *convection*?
- 11.5 When a gas is heated, its particles gain energy. Imagine that you could see the particles of a hot gas and of a cold gas (at the same pressure).
 - a What difference would you see in their movement?
 - **b** What difference would you see in their separation?
- **11.6** What part does convection play in the spreading of energy around a room from an electric heater?
- **11.7** Write a brief explanation of convection, using the terms *expansion*, *density* and *gravity*.
- 11.8 Why would it not be a good idea to fit an electric heater near the ceiling in a room?

Our skin detects the infrared radiation produced by a hot object. Nerve cells buried just below the surface respond to heat. You notice this if you are outdoors on a sunny day.

Here are the characteristics of infrared radiation that we have mentioned so far. Infrared radiation:

- is produced by warm or hot objects
- is a form of electromagnetic radiation
- travels through empty space (and through air) in the form of waves
- travels in straight lines
- warms the object that absorbs it
- is invisible to the naked eye
- can be detected by nerve cells in the skin.

Figure 11.11 shows another way of detecting infrared radiation, using a heat-sensitive camera. The photograph shows a boy sitting in front of a camera that detects infrared radiation. It is very sensitive to slight differences in temperature between different parts of the body.

11.3 Radiation

At night, when it is dark, you can see much further than during the day. In the daytime, the most distant object you are likely to be able to see is the Sun, about 150 million kilometres away. At night, you can see much further, to the distant stars. The most distant object visible to the naked eye is the Andromeda galaxy, about 20 million million million kilometres away.

The light that reaches us from the Sun and other stars travels to us through space in the form of **electromagnetic radiation**. This radiation travels as electromagnetic waves. It travels over vast distances, following a straight line through empty space. As well as light, the Earth is bathed in other forms of electromagnetic radiation from the Sun, including infrared and ultraviolet. (There is much more about electromagnetic radiation in Chapter 15.)

The hotter an object, the more **infrared radiation** it gives out. You can use this idea to help you in doing a bit of detective work. Outside the house, a car is parked. How long has it been there? Hold your hands close to the engine compartment to see if you can detect heat radiating from it. Inside the house, the lights are out. Hold your hand close to the light bulb. Can you detect radiation, which will tell you that it was recently lit up?

Figure 11.11 Using an infrared-sensitive camera. Slight variations in body temperature show up as different colours. Cameras like this are used in medicine to detect skin disorders and infections.

Study tip

Remember that radiation is a transfer of energy. Anything that absorbs radiation will get warmer.

Questions

- 11.9 How can energy be transferred through the vacuum of space: by conduction, by convection, or by radiation?
- **11.10** On Earth, we receive visible light from the Sun. Name **two** other forms of electromagnetic radiation that we receive from the Sun.
- **11.11** If an object's temperature is increased, what happens to the amount of infrared radiation it emits?

Good absorbers, good emitters

On a hot, sunny day, car drivers may park their cars with a sunshield behind the windscreen (Figure 11.12). Such a sunscreen is usually white (or another light colour) or shiny, because this reflects away light and infrared radiation, that would make the car get uncomfortably hot. The black plastic parts of the car (such as the steering wheel and dashboard) are very good absorbers of infrared, and they can become too hot to touch.

It is the surface that determines whether an object absorbs or reflects infrared radiation. A surface that is a good reflector is a poor absorber. On a hot day, you may have noticed how the black surface of a tarred (metalled) road emits heat. Black surfaces readily absorb infrared radiation. They are also good emitters.

- Shiny or white surfaces are the best reflectors (the worst absorbers).
- Matt black surfaces are the best absorbers (the worst reflectors).
- Matt black surfaces are the best emitters.

Figure 11.12 A sunscreen reflects away unwanted radiation, which would otherwise make the car unbearably hot.

Question

- **11.12** Suppose that you have a matt black surface and a shiny black surface.
 - **a** Which is a better absorber of infrared radiation?
 - **b** Which is a better emitter of infrared radiation?
 - **c** Which is a better reflector of infrared radiation?

Investigating rates of radiation

Figure 11.13 shows an experiment to compare the rates at which black and shiny surfaces emit radiation.

One can has a matt black surface, and the other is shiny. Both are filled with hot water, and they cool by radiation. The black can cools more rapidly than the shiny one.

There are two other factors which affect the rate at which energy is radiated from the surface of a hot object:

- ◆ the temperature of the surface a hotter surface radiates energy at a greater rate
- the surface area energy is radiated at a greater rate from a bigger surface area.

Question =

11.13 Look at Figure 11.13. Use what you know about thermal (heat) energy transfers to explain why the cans must be fitted with lids, and why they should stand on a wooden or plastic surface.

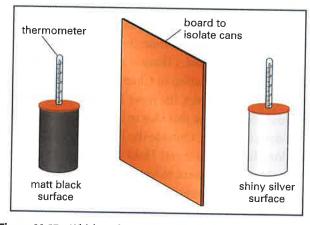


Figure 11.13 Which surface radiates better, black or shiny?

Activity 11.4 Radiation experiments

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

A03.4 Interpret and evaluate experimental observations and data

A03.5 Evaluate methods and suggest possible improvements

Safety

Take care when using hot water. Wear eye protection when using a Bunsen burner.

Carry out some experiments (or watch demonstrations) showing how hot objects radiate.

Comparing emitters

In Figure 11.13, one can has a blackened surface, and the other can has a shiny surface.

- 1 Set up the experiment as shown.
- 2 Fill the two cans with hot water.
- **3** Use thermometers or electronic temperature probes to measure the temperatures.
- 4 What features of the experimental design ensure that this is a fair test?

Comparing absorbers

By modifying the experiment shown above, you can find out which surface is better at absorbing infrared radiation.

- 1 Fill the two cans with cold water.
- 2 Place a Bunsen burner between the cans and light it.
- 3 Use thermometers or electronic temperature probes to measure the temperatures.
- Which can absorbs heat from the flame more quickly?

11.4 Some consequences of thermal (heat) energy transfer

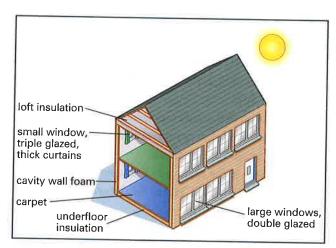
In this section, we will see how we can use ideas about thermal (heat) energy transfers to

understand a lot of different situations. Remember the following:

- ◆ Thermal (heat) energy travels from a hotter place to a colder place. It is the temperature difference that makes it flow.
- Conduction is the only way that energy can pass through a solid. Energy travels through the solid but the solid itself cannot move.
- ◆ Convection is the main way that energy is transferred in a fluid. Warm fluid moves around, carrying energy with it.
- Radiation is the only way that thermal energy can travel through empty space. Infrared radiation can also pass through some transparent materials such as air.

Hot objects have a lot of **internal energy**. As we have seen above, energy tends to escape from a hot object, spreading to its cooler surroundings by conduction, convection and radiation. This can be a great problem. We may use a lot of energy (and money) to heat our homes during cold weather, and the energy simply escapes. We eat food to supply the energy we need to keep our bodies warm, but energy escapes from us at a rate of roughly 100 watts (100 W = 100 J/s).

To keep energy in something that is hotter than its surroundings, we need to *insulate* it. Knowing about conduction, convection and radiation can help us to design effective insulation.


Study tip

Remember that all three mechanisms of energy transfer (conduction, convection and radiation) may be involved when an object warms up or cools down.

Home insulation

A well-insulated house can avoid a lot of energy wastage during cold weather. Insulation can also help to prevent the house from becoming uncomfortably hot during warm weather. Figure 11.14 shows some ways in which buildings can be insulated. More details of these are listed in Table 11.2.

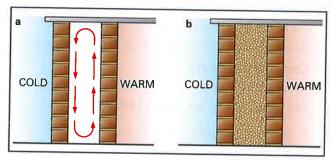
Double-glazed windows usually have a vacuum between the two panes of glass. This means that energy can only escape by radiation, since conduction and convection both require a material. Modern houses are often built with cavity walls, with an air gap between the two layers of bricks. It is impossible to have a vacuum in

Figure 11.14 This house has been well designed to reduce the amount of fuel needed to keep it warm. The windows on the sunny side are large, so that the rooms benefit from direct radiation from the Sun. The windows on the other side are small, so that little energy escapes through them.

Method	Why it works			
thick curtains, draught excluders	stops convection currents, and so prevents cold air from entering and warm air from leaving			
loft and underfloor insulating materials	prevents conduction of heat through floors and ceilings			
double and triple glazing of windows	vacuum between glass panes cuts out losses by conduction and convection			
cavity walls	reduces heat losses by conduction			
foam or rockwool in wall cavity	further reduces heat losses by convection			

Table 11.2 Ways of retaining energy in a house.

the cavity, and convection currents can transfer energy across the gap (see Figure 11.15a). Filling the cavity with foam means that a small amount of energy is lost by conduction, although the foam material is a very poor conductor. However, this does stop convection currents from flowing (Figure 11.15b), so there is an overall benefit.


Keeping cool

Vacuum (thermos) flasks are used to keep hot drinks hot. They can also be used to keep cold drinks cold. Giant vacuum flasks are used to store liquid nitrogen and helium at very low temperatures, ready for use in such applications as body scanners in hospitals.

Figure 11.16 shows the construction of a vacuum flask. Glass is generally used, because glass is a good insulator. However, some flasks are made of steel for added strength. The gap between the double walls is evacuated to reduce losses by conduction and convection. Silvering reduces losses by radiation by reflecting back any infrared radiation. A vital part is the stopper, which prevents losses by convection and evaporation.

Convection, climate and weather

Convection currents explain the origins of winds and ocean currents, two of the major factors that control climate patterns around the world. For example, warm air rises above the equator, and colder air sinks in

Figure 11.15 a A cavity wall reduces heat loss by conduction, because air is a good insulator. However, a convection current can transfer energy from the inner wall to the outer wall. **b** Filling the cavity with foam or mineral (glass or rock) wool prevents convection currents from forming.

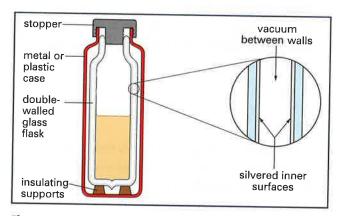
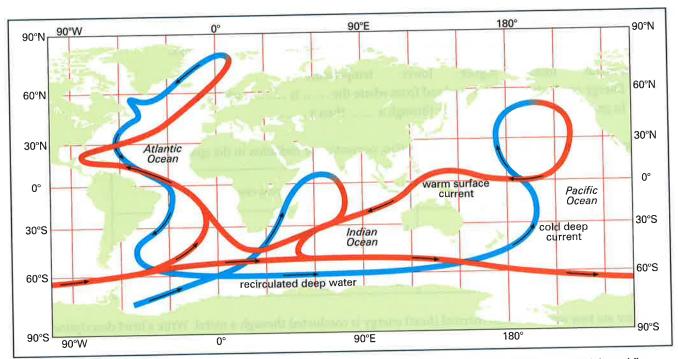



Figure 11.16 A vacuum flask is cleverly designed to keep hot things hot by reducing heat losses. It also keeps cold things cold. Although we might say 'it stops the cold getting out', it is more correct to say that it prevents heat from getting in. The first such flask was designed by James Dewar, a Scottish physicist, in the 1870s. He needed flasks to store liquefied air and other gases at temperatures as low as ~200°C. Soon after, people realised that a flask like this was also useful for taking hot or cold drinks on a picnic.

Figure 11.17 Ocean currents help to move energy from the tropics to cooler regions. Colder water from polar regions sinks and flows towards the equator. Warmer water flows closer to the ocean surface.

subtropical areas. This creates the pattern of Trade Winds that are experienced in the tropics.

Ocean currents (Figure 11.17) help to spread warmth from equatorial regions to cooler parts of the Earth's surface. Warm water at the surface of the sea flows towards the poles. In polar regions, colder water sinks and flows back towards the equator. Provided this pattern remains constant, this helps to make temperate regions of the world more habitable. However, there is evidence that the pattern of ocean currents is changing, perhaps as a consequence of global warming.

Questions

- 11.14 List as many features as you can that contribute to the insulation of a house in a cold climate. For each, state whether it reduces heat loss by conduction, by convection or by radiation.
- **11.15** Why is it important to wear a hat on a very cold day?

Summary

You should know:

- about thermal conductors and insulators
- how energy is conducted through a solid
 - about convection and convection currents
 - about infrared radiation
- that radiation can be emitted, absorbed and reflected.

End-of-chapter questions

1 Copy and complete the sentences below, choosing words from the list to fill the gaps.

non-metal metal higher lower temperature

- a Energy conducts through a steel rod from where the is to where it is
- b In general, energy conducts faster through a than a
- 2 Copy and complete the table. Write conduction, convection or radiation in the spaces in the first column.

Warm fluid moves, carrying energy with it.	
Energy travels as infrared waves.	
Energy travels through a material without the material moving.	

- There are two ways in which thermal (heat) energy is conducted through a metal. Write a brief description of each of them.
 - **a** How energy is passed from one particle to the next.
 - **b** How energy is transferred by electrons.
 - 4 Copy this description of convection, choosing the correct word from each pair.

When a fluid is heated, it *expands* / *contracts*. Because its volume is *greater* / *less*, its density is *greater* / *less*. It is thus *heavier* / *lighter* than the surrounding fluid, and so it *rises* / *sinks*. Colder fluid is *more* / *less* dense and so *density* / *gravity* pulls it downwards. It replaces the hotter fluid. In this way, a *conduction* / *convection* current starts to flow.

5 Copy and complete the table. Use words from the list to describe materials that are good at absorbing, emitting and reflecting radiation. You will have to use some of the words more than once.

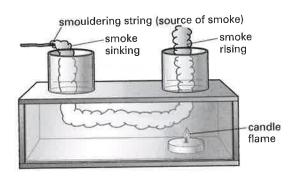
shiny black white matt

-

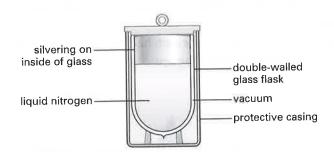
6 In cold climates, it is important to keep a house well insulated. Listed below are three ways of insulating a house. For each, explain how it reduces heat loss. In your answers, refer to conduction, convection or radiation, as appropriate.

a Heavy curtains, when closed, trap air next to a window.

[2]

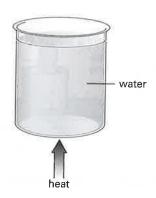

b Shiny metal foil is fitted in the loft, covering the inside of the roof.

[2]


c Glass wool is used to fill the gap in the cavity walls.

[2]

7 The diagram shows a way of demonstrating a convection current in air.


- Explain why air rises above the hot flame.
- b Explain why colder air flows downwards through the other 'chimney'. [2]
- 8 a One end of a plastic rod is immersed in boiling water. The temperature of the other end gradually increases. Use ideas from the kinetic model of matter to explain how energy travels from one end of the rod to the other.
 - b If the experiment was repeated using a metal rod of the same dimensions as the plastic rod, what difference would you expect to notice?
 - c What particles in a metal are involved in transferring energy from hotter regions to colder ones? [1]
- 9 Liquid nitrogen, at a temperature of -196 °C, is stored in a wide-necked vacuum flask, as shown.

- a Explain the features of the design of this flask that help to keep the liquid nitrogen cold. [8]
- b When *hot* drinks are stored in a vacuum flask, it is important to keep the stopper in the flask.

 Why is it less important to have a stopper in a flask that is being used to keep things *cold*? [2]

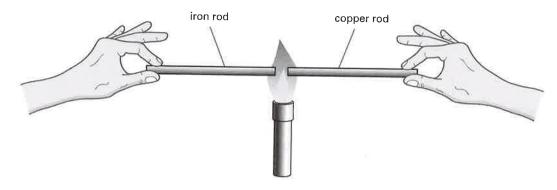
10 Some water in a glass beaker is heated from below, as shown in the diagram.

- a Name the process by which thermal energy is transferred:
 - i through the glass,
 - ii throughout the water.

[2]

[1]

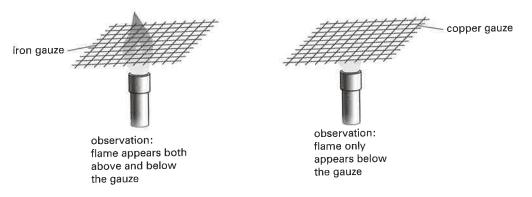
- **b** As thermal energy is supplied, the temperature of the water begins to rise. Although the supply of energy remains constant, eventually the temperature becomes steady at about 80 °C. Suggest why this happens.
- c The rate of energy supply is increased. The temperature of the water begins to rise again, but eventually becomes steady at a higher temperature. This time many bubbles are seen throughout the water.
 - State what is now happening to the water. [1]
 - ii What gas do the bubbles contain? Choose one from:
 - air hydrogen oxygen steam


[1]

[Cambridge IGCSE® Physics 0625/23, Question 6, October/November, 2012]

- 11 a i Name the process by which thermal energy is transferred through a metal rod. [1]
 - ii Describe how this process occurs.

[2]


b An iron rod and a copper rod of equal length are each held by hand at one end, with the other end in the flame from a Bunsen burner, as shown in the diagram.

The copper rod becomes too hot to hold much sooner than the iron rod. What does this information tell you about iron and copper?

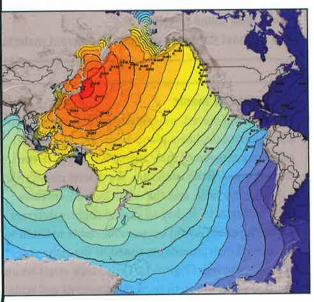
[1]

Gas has to be above a certain temperature before it burns.
 The diagram shows two similar wire gauzes, one made of iron wire and one made of copper wire.
 Each is held over a Bunsen burner. When the gas supply is turned on and ignited below the gauze, the effect is as shown in the diagram.

How can these observations be explained?

[4]

[Cambridge IGCSE® Physics 0625/33, Question 4, October/November, 2010]


Block 3

Physics of waves

In December 2004, a giant tsunami caused by an underwater earthquake devastated coastal regions in several countries around the Indian Ocean. Hundreds of thousands of people lost their lives.

Earthquakes are vibrations that carry vast amounts of energy. They travel right through the Earth and can be detected thousands of kilometres away. Surprisingly, earthquakes have also proved useful. Because we can understand how they travel through solids and liquids, geologists have been able to use information from earthquakes to build up a detailed picture of the inner structure of the Earth.

In this block we will look at how the idea of waves can be used to explain sound and light.

Scientists use what they know about waves to calculate how a tsunami will spread out after an earthquake. This diagram shows the Japanese tsunami of 2011.

12 Sound

In this chapter, you will find out:

- how sounds are produced
- how to measure the speed of sound
- how pitch and loudness are related to frequency and amplitude
- how sound travels
- S
 about the speed of sound in different materials.

The sound of music

Before being played, most instruments are tuned to a standard scale, like a piano keyboard. Guitarists adjust the tension of their strings so they play the correct notes. In an orchestra, the oboist usually plays a single clear note, and the other instrumentalists tune to this note. If they all played slightly different notes, the effect would be uncomfortable to listen to. But not all instruments are tuned in the same way. Scottish bagpipes (Figure 12.1) produce notes on an unusual scale, different from the conventional scale of a piano. The Scottish pipes can sound very exciting

Figure 12.1 Scottish pipers.

and were often played before battles, to give the Scottish troops courage and to alarm the enemy. But when mixed with other instruments, the notes can clash to produce a very unpleasant sound.

In a similar way, the instruments of an Indonesian *Gamelan* band (Figure 12.2) play notes on a different scale. The band includes string, woodwind and a wide range of percussion instruments. For people who are used to listening to conventional western music (popular or classical), it can take some time to tune in to the complex rhythms and harmonies produced by a *Gamelan* band.

In this chapter, we will look at musical sounds (and other sounds, too), how they are produced, and how they travel. We will also look at why different instruments sound different to our ears.

Figure 12.2 A Gamelan band.

12.1 Making sounds

Different musical instruments produce sounds in different ways.

- ◆ Stringed instruments. The strings are plucked or bowed to make them vibrate. In most stringed instruments, the vibrations are transmitted to the body of the instrument, which also vibrates, along with the air inside it. The vibrations may be too small or too fast to see, but they can be shown up using laser techniques (see Figure 12.3).
- ♦ Wind instruments. The 'air column' inside the instrument is made to vibrate, by blowing across the end of or into the tube (Figure 12.4). The smallest instruments have a straight air column. Bigger instruments capable of playing deeper notes (such as a horn or tuba) have an air column that is bent around so that the instrument is not inconveniently long. Some instruments have a reed in the mouthpiece. This vibrates as the player blows across it, causing the air to vibrate.
- ◆ Percussion instruments. These instruments are played by striking them (Figure 12.5). This produces vibrations – of the keys of a xylophone, the skin of a drum, or the metal body of a gong, for example.

In each case, part (or all) of the instrument is made to vibrate. This causes the air nearby to vibrate, and the *vibrations* travel through the air to the audience's ears. Some vibrations also reach us through the ground, so that they make our whole body vibrate

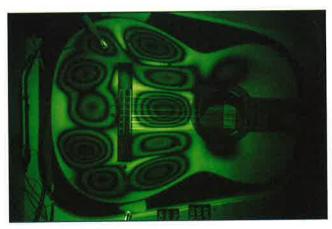


Figure 12.3 Although the player only touches the strings of a guitar, the instrument's whole body vibrates to produce the notes we hear. This is shown up in this image, produced by shining laser light onto the guitar. Different notes produce different patterns of vibration, and this helps to give each note its particular quality.

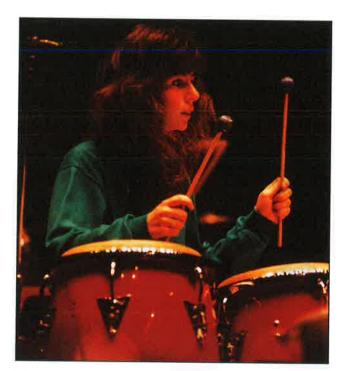


Figure 12.4 Two recorders can look very similar, but the lower one is made of wood and the other of plastic. A flute may be made of wood or metal. This tells us that it is not the material that the instrument is made of that matters. It is the air inside that vibrates to produce the desired note. Blowing into the instrument causes the air column inside it to vibrate, and the vibrations are transferred to the air outside.

(see Figure 12.5). If you sit close to a loud band or orchestra, you may feel your whole body vibrating in response to the music.

Sounds travel through the air as vibrations.

These vibrations can travel through any material – through the solid ground, through the glass panes of a window, through water. If you put a battery-powered radio on the side of the bath and submerge your ears, you will hear the sounds from the radio travelling through the solid bath and the liquid water to your ears.

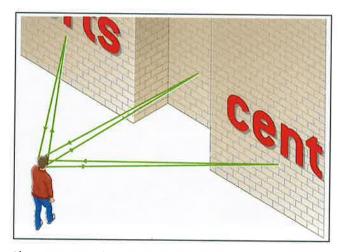
Figure 12.5 Evelyn Glennie is one of the world's top solo percussionists, despite the fact that she is deaf. She has trained herself to be sensitive to vibrations that reach her body through the ground. This allows her to follow the rhythm of a piece of music, as well as to detect the subtle differences in tone between different percussion instruments.

Questions

- **12.1** Which of the following materials can sound travel through: wood, air, water?
- **12.2** When a woodwind instrument such as a flute produces a note, what part of it vibrates?

12.2 At the speed of sound

The speed of sound in air is about 330 m/s, or 1200 km/h. That is about ten times the speed of cars on a major highway. When someone speaks, it seems to us that we hear the sound they make as soon as they make it. However, it takes a small amount of time to reach our ears. For example, if we are speaking to someone who is just 1 m away, the time for sounds to travel between us is:


$$\frac{1 \text{ m}}{330 \text{ m/s}} = 0.003 \text{ s} = 3 \text{ ms } (3 \text{ milliseconds})$$

This is far too short a time for us to notice.

However, there are occasions when we may notice the time it takes for sounds to travel. For example, imagine that you shout at a distance from a long high wall or cliff. After you shout, you may hear an *echo*. The sound has reflected from the hard surface and back to your ears (see Figure 12.6). Worked example 12.1 shows how to calculate the time it takes for the sound to travel to a wall and back again.

If you watch people playing a game such as cricket or baseball, you may notice a related effect. You see someone hitting a ball. A split second later you hear the sound of the ball being struck. The time interval between seeing the hit and hearing it occurs because the sound travels relatively slowly to your ears, while the light travels very quickly to your eyes. So the light reaches you first, and you see before you hear. When cricket matches are televised, they may use a microphone buried in the pitch to pick up the sounds of the game, so that there is no noticeable gap between what you see and what you hear.

For the same reason, we usually see a flash of lightning before we hear the accompanying roll of thunder. Count the seconds between the flash and the bang. Then divide this by three to find how far away the lightning is, in kilometres. This works because the sound takes roughly 3 s to travel 1 km, whereas the light travels the same distance in a few microseconds.

Figure 12.6 An echo is heard when a sound reflects off a hard surface such as a large wall. Sound travels outwards from the source, and bounces off the wall. Some of it will return to the source. If there are several reflecting surfaces, several echoes may be heard.

Study tip

It is useful to remember that sound travels 1 km in about 3 s.

Worked example 12.1

A man shouts loudly close to a high wall (see Figure 12.6). He hears one echo. If the man is 40 m from the wall, how long after the shout will the echo be heard? (Speed of sound in air = 330 m/s.)

Step 1: Calculate the distance travelled by the sound. This is twice the distance from the man to the wall (since the sound travels there and back).

distance travelled by sound $= 2 \times 40 \text{ m} = 80 \text{ m}$

Step 2: Calculate the time taken for the sound to travel this distance.

time taken =
$$\frac{\text{distance}}{\text{speed}}$$

= $\frac{80 \text{ m}}{330 \text{ m/s}}$ = 0.24 s

So the man hears the echo 0.24s (about a quarter of a second) after his shout.

Measuring the speed of sound

One way to measure the speed of sound in the lab is to find out how long a sound takes to travel a measured distance, just as you might measure the speed of a moving car or cyclist. Since sound travels at a high speed, you need to be able to measure short time intervals. Figure 12.7 shows one method.

When the student bangs the two blocks of wood together, it creates a sudden, loud sound. The sound reaches one microphone, and a pulse of electric current travels to the timer. The timer starts running. A fraction of a second later, the sound reaches the second microphone. A second pulse of current stops the timer. Now the timer indicates the time taken for the sound to travel from one microphone to the other.

It is important that the two microphones should be a reasonable distance apart – say, three or four metres. The further apart the better, since this will give a longer 'time of flight' for the sound to travel from one microphone to the other.

Activity 12.1 Measuring the speed of sound in air

Skills

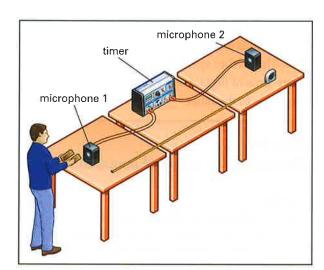
AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

AO3.5 Evaluate methods and suggest possible improvements

Use echoes to help you to measure the speed of sound in air.


This experiment must be performed out of doors. You need a large reflecting surface such as the wall of a building. You also need a partner.

Method

- 1 Stand at a distance from the wall. The first student bangs two wooden blocks together once. Listen to the echo.
- 2 Now bang the blocks together at a regular rate, so that each bang coincides with the previous echo. (This will need some practice.)
- 3 The second student uses the stopwatch to time ten bangs (count zero, one, two, three, ..., ten). Calculate the time for one bang. This is the time taken for the sound to travel to the wall and back again.
- 4 Measure the distance from where you are standing to the wall.
- 5 Use your measurements to calculate the speed of sound.

Now review your procedure.

- Were you standing in the best place to hear the echoes?
- ◆ Could you stand further from the wall to increase the time between bang and echo?
- ♦ Why would this give a more accurate result?

Figure 12.7 A 'time-of-flight' method for measuring the speed of sound. The wooden blocks and the two microphones are arranged in a straight line. The bang from the blocks is picked up first by microphone 1 and then by microphone 2. The first activates the timer, and the second stops it. The speed of sound is calculated from the distance between the two microphones and the time taken by the sound to travel between them.

Q Question

- **12.3** Sound takes about 3 ms (3 milliseconds) to travel 1 m.
 - **a** How long will it take to travel from the centre of a cricket pitch to spectators who are 200 m away?
 - **b** What fraction of a second is this?

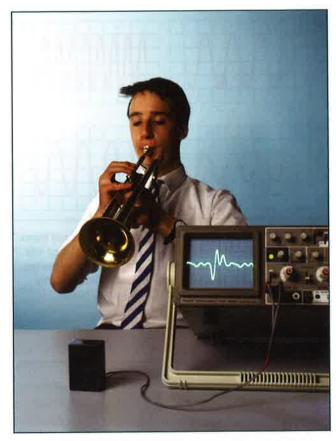
Different materials, different speeds

We talk about 'the speed of sound' as 330 m/s. In fact, it is more correct to say that this is the speed of sound in air at 0 °C. The speed of sound changes if the temperature of the air changes, if it is more humid, and so on. (Note also that some people talk about 'the velocity of sound', but there is no need to use the word 'velocity' here, since we are *not* talking about the direction in which the sound is travelling – see Chapter 2.)

Table 12.1 shows the speed of sound in some different materials. You can see that sound travels faster through solids than through gases. Its speed in water (a liquid) is in between its speed in solids and gases.

	Material	Speed of sound / m/s
Gases	air	330
	hydrogen	1280
	oxygen	316
	carbon dioxide	268
Liquids	water	1500
	sea water	1530
	mercury	1450
Solids	glass	5000
	iron, steel	5100
	lead	1200
	copper	3800
	wood (oak)	3800

Table 12.1 The speed of sound in different materials (measured at standard temperature and pressure).


Questions

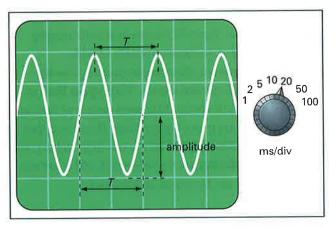
- 12.4 Look at the experiment to measure the speed of sound shown in Figure 12.7. Explain why the wooden blocks and the two microphones must be in a straight line.
- **12.5** Which travels faster, light or sound? Describe **one** observation that supports your answer.

12.3 Seeing sounds

When a flautist plays her flute, she sets the air inside it vibrating. A trumpeter does the same thing. Why do the two instruments sound so different? The flute and the trumpet each contain an 'air column', which vibrates to produce a musical note. Because the instruments are shaped differently, the notes produced sound different to our ears.

An image of the notes can be produced by playing the instrument next to a microphone connected to an oscilloscope (Figure 12.8). The microphone receives the vibrations from the instrument and converts them to an electrical signal, which is displayed on the oscilloscope screen. The trace on the screen shows the regular

Figure 12.8 To display the vibrations of a musical note, it is converted to an electrical signal by a microphone and displayed on the screen of an oscilloscope. The trace on the screen shows the regular pattern of vibration of the sounds.


up-and-down pattern of the vibrations that make up the sound.

Pure notes

A signal generator can produce pure notes that have a very simple shape when displayed on an oscilloscope screen, as shown in Figure 12.9. As shown in the diagram, we can make an important measurement from this graph. This is the time for one complete vibration, known as the **period** T of the vibration. This is related to the **frequency** f of the sound:

period T = number of seconds for one vibration frequency f = number of vibrations per second Hence we can write the following equation:

$$f = \frac{1}{T}$$

Figure 12.9 A pure note has the shape shown in this oscilloscope trace. The setting of the oscilloscope timebase is indicated on the right. This tells you how much time is represented by the divisions on the horizontal scale.

Frequency is measured in hertz (Hz). A frequency of 1 Hz is one vibration per second.

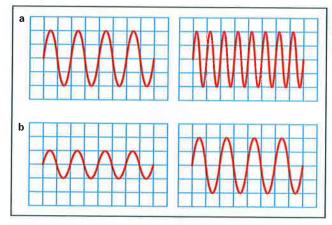
High and low, loud and soft

You can understand how an oscilloscope works by connecting it up to a signal generator. With a low-frequency note (say, 0.1 Hz), you will see that there is a single dot, which moves steadily across the oscilloscope screen. The electrical signal from the signal generator makes it move up and down in a regular way. Increasing the frequency makes the dot go up and down faster, until it blurs into a continuous line.

Changing the settings on the signal generator allows you to see the traces for notes of different frequencies and loudnesses. A loudspeaker will let you hear them as well. As shown in Figure 12.10, increasing the frequency of the note squashes the vibrations together on the screen. The note that you hear has a higher pitch. Increasing the *loudness* produces traces that go up and down further – their **amplitude** increases. Take care: the amplitude is measured from the centre line to a **crest** (peak), not from a **trough** to a crest. To summarise:

- higher pitch means higher frequency
- louder note means greater amplitude.

Range of hearing


A piano keyboard covers a wide range of notes, with frequencies ranging from about 30 Hz at the bottom end to about 3500 Hz at the top end. Most other instruments cover a narrower range than this. For example, a violin ranges

from about 200 Hz to 2500 Hz. The range of human hearing is greater than this. Typically, we can hear notes ranging from about 20 Hz up to about 20000 Hz (20 kHz, 20 kilohertz). However, older people gradually lose the ability to hear high-pitched sounds. Their **upper limit of hearing** decreases by about 2 kHz every decade of their age.

Sounds that are more high-pitched than the upper limit of hearing (above 20 kHz) are too high to hear, and are known as **ultrasound**. Sounds below 20 Hz are too low to hear, and are known as **infrasound**.

Study tip

The prefix 'ultra' means 'beyond'; and the prefix 'infra' means 'below'.

Figure 12.10 a Two notes with the same amplitude, and hence the same loudness. The second has more waves squashed into the same space, so its frequency is higher. Its pitch is higher too (it sounds higher). b Two notes with the same frequency. The second has a greater amplitude, so that it sounds louder.

Activity 12.2 Seeing sounds

Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- AO3.2 Plan experiments and investigations
- AO3.3 Make and record observations, measurements and estimates
- AO3.4 Interpret and evaluate experimental observations and data

Use a signal generator and an oscilloscope to show traces for different sounds, and test your range of hearing.

- 1 Use two connecting wires to connect a loudspeaker to the low-impedance output of the signal generator.
- 2 Switch on the signal generator. Adjust the frequency of its output to 100 Hz. Turn the output volume up and down. You should hear a steady hum. Set the volume to a level for comfortable hearing.
- 3 Now turn the frequency down until the sound disappears. Note the frequency. This is your lower limit of hearing.

- 4 Now set the frequency at 10 kHz. You will hear a high-pitched whistling sound. Turn the frequency up until you no longer hear the sound. Note the frequency. This is your upper limit of hearing.
- 5 Now you are ready to use the oscilloscope. Set the signal generator frequency to 100 Hz again and connect the high-impedance output to the input of the oscilloscope. Adjust the timebase and voltage gain controls until you have a trace showing two or three complete waves across the screen.
- 6 Adjust the loudness of the signal generator up and down and observe how the amplitude of the trace changes. Then adjust the frequency and again observe how the trace changes.
- 7 If your signal generator has square wave and triangular wave outputs, try these. How does the sound change, and how does the oscilloscope trace change?
- 8 Switch off the signal generator and disconnect it from the oscilloscope. In its place, connect a microphone to the input of the oscilloscope.
- 9 Play a musical instrument (or simply whistle) to give a steady note. Observe its trace on the screen. Try changing the frequency and the loudness. How does the trace change?

Questions

- **12.6** What happens to the pitch of a sound if its frequency increases?
- **12.7** What happens to the loudness of a sound if its amplitude decreases?
- **12.8 a** What is the approximate frequency range of human hearing?
 - **b** How does this change with age?
- **12.9** What is meant by *ultrasound*?
- **12.10** Sketch the trace you would expect to see on an oscilloscope screen, produced by a pure note. On your diagram, indicate the distance that corresponds to the period *T* of the vibration.
- **12.11** Sound A has a period of 0.010 s; sound B has a period of 0.020 s.
 - a Which has the greater frequency?
 - **b** Which will sound more high-pitched?

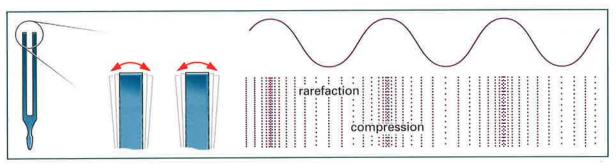
12.4 How sounds travel

Sounds are vibrations that travel through the air (or another material), produced by vibrating objects. How can we picture the movement of the molecules of the air as a sound travels through? Figure 12.11 shows how the vibrations of a tuning fork are transmitted through the air. As the prong of the fork moves to the right, it pushes on the air molecules on that side, squashing them together. These molecules push on their neighbours, which become compressed, and which in turn push on their neighbours, and so on.

It is important to note that the individual air molecules do not travel outwards from the vibrating fork. The air molecules are merely pushed back and forth. It is the vibrations that travel through the air to our ears.

This picture of how a sound travels also explains why sound cannot travel through a vacuum. There are no molecules or other particles in a vacuum to vibrate back and forth.

Figure 12.11 also shows another way of representing a sound, as a wavy line rather like the trace on an oscilloscope screen. The crests on the wave match the compressions, and the troughs match the rarefactions. It is much easier to represent a sound as an up-and-down wave like this, rather than drawing lots of air molecules pushing each other back and forth.


Here we have used two different **models** to represent sound:

- 1 vibrations travelling through a material the particles of the material are alternately compressed together and then rarefied as the sound passes through
- 2 sound as a wave a smoothly varying up-and-down line, like the trace on an oscilloscope screen.

The first of these models gives a better picture of what we could see if we could observe the particles of the material through which the sound is passing. The second model is easier to draw. It also explains why we talk about **sound waves**. The wavy line is rather like the shape of waves on the sea. There is much more about sound waves (and other waves) in Chapter 14.

Questions

- **12.12** Why is it impossible for sounds to travel through a vacuum?
- **12.13** How could you convince a small child that, when you speak, it is not necessary for air to travel from your mouth to the ear of a listener?

Figure 12.11 A vibrating tuning fork produces a series of compressions and rarefactions as it pushes the air molecules back and forth. This is how a sound travels through the air (or any other material). We can relate this to the wavy trace on an oscilloscope screen.

Compression, rarefaction

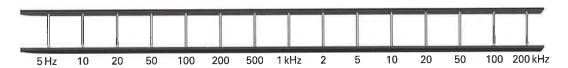
Look back to Figure 12.11. The areas of the sound wave where the air molecules are close together are called **compressions**. As the tuning fork vibrates back and forth, compressions are sent out into the air all around it. In between the compressions are **rarefactions**, areas in which the air molecules are less closely packed together, or rarefied.

The sound wave has been drawn so that the crests on the wave match the compressions, and the troughs match the rarefactions. Thus the wave represents the changes in air pressure as the sound travels from its source.

12.14 What is the difference between a compression and a rarefaction in a sound wave? Illustrate your answer with a sketch.

Summary

You should know:

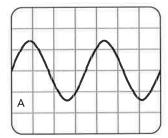

- how sounds are produced and how they travel
- about reflection of sound
- the relative speeds of sound in solids, liquids and gases
 - how the frequency and amplitude of sound are related to pitch and loudness
 - the range of hearing
- how a sound travels in the form of compressions and rarefactions.

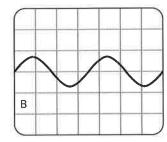
End-of-chapter questions

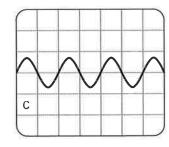
1	Сс	Copy and complete the sentences below, choosing words from the list to fill the gaps.							
	he	rtz	echo	vacuum	frequency	gases	source	vibrations	second
	a	A sound is produced by a vibrating							
	b	The of a sound travel through a material at the speed of sound.							
	c	The name for a reflected sound is							
	d	The of a sound is the number of vibrations each							
	e	The unit of frequency is the							
	f	Sounds can travel through solids, liquids and They cannot travel through a							
					•			•	entreading and a commence of the state of the state of

- 2 Copy and complete the sentences below, choosing the correct word from each pair.
 - a A sound with a higher pitch has a greater / smaller frequency / amplitude.
 - **b** A louder sound has a *greater / smaller frequency / amplitude*.
- **a** Draw a wave shape to represent a sound wave. Label this 'A'. Add a second wave to represent a sound with a higher pitch. Label this 'B'.
 - **b** Draw a wave shape to represent a sound wave. Label this 'C'. Add a second wave to represent a louder sound. Label this 'D'.

4 The diagram shows a range of frequencies.




- a Copy the diagram. Shade and label the range of frequencies that we can normally hear.
- **b** On your diagram, label the region known as ultrasound.


5 Copy and complete the table, which describes different regions in a sound wave. Write *compression* and *rarefaction* in the correct box in the first column.

where particles of the medium are spread out	
where particles of the medium are squashed together	

- 6 Sounds are produced by vibrating objects.
 - **a** When a wind instrument such as a trumpet produces a sound, what is it that is made to vibrate by the player?
 - **b** When a stringed instrument such as a violin is played, what is it that is made to vibrate by the player?
 - c Describe how the sound from the instrument travels through the air to the listener's ears.
- 7 The vibrations of a sound can be detected using a microphone and then displayed on an oscilloscope screen. The diagram shows three such traces.

- a Which trace shows the loudest sound? Explain your answer.
- \boldsymbol{b} $\,$ Which trace shows the sound with the highest pitch? Explain your answer.
- 8 Describe a method for measuring the speed of sound in air, in the laboratory. What measurements are made, and how is the speed of sound calculated from them? [5]

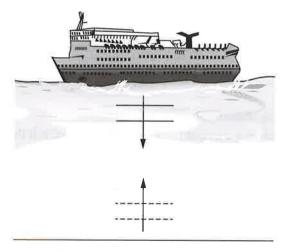
[1]

[1]

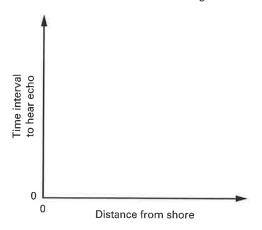
[3]

[2] [2]

- In which material does a sound travel faster, a solid or a gas?
 - [1] **b** Give one piece of evidence that shows that sound can travel through solid materials. [2] To measure the length of a long metal rod, engineers send a pulse of sound into one end of it. The sound travels to the other end and is reflected back. The engineers detect this echo, and determine the time taken for the sound to travel from one end of the rod to the other.


[4]

[3]


[1]

[2]

- c When making measurements on a steel rod of length 400 m, they find that the echo returns 0.16 s after the initial pulse. What is the speed of sound in steel?
- 10 A boat is using echo-sounding equipment to measure the depth of the water underneath it, as illustrated in the first diagram.

- The equipment in the boat sends a short pulse of sound downwards and detects the echo after a time interval of 0.80 s.
 - Describe how an echo is caused.
 - [2] The speed of sound in water is 1500 m/s. Calculate the distance travelled (in metres) by the
 - sound in 0.80 s.
 - State the depth (in metres) of water under the boat.
- The boat is sailing away from the shore. The depth of water increases uniformly with distance from the shore.
 - Copy the axes shown in the diagram. Sketch a graph that shows how the time interval to hear the echo might change as the distance from the shore changes.

[Cambridge IGCSE® Physics 0625/23, Question 6, October/November, 2011]

- 11 A teacher is trying to find an unusual way to measure the speed of sound using an echo method. She has a firework, which will make a loud bang at ground level when ignited. She also has a stopwatch and a tape measure.
 - a To obtain an echo, she needs a suitable reflector.

 Suggest something that she could use as a reflector.

[1]

- **b** She stands a measured distance of 360 m from her chosen reflector and ignites the firework in a safe manner.
 - i When should she start the stopwatch?
 - ii When should she stop the stopwatch?

[2]

c After she stops the stopwatch, its appearance is as shown in the diagram.

- i Using this reading and the distance from b, calculate the speed of sound in air, in m/s. [4]
- ii Suggest one reason why the speed calculated in **c** i might not be quite correct. Assume that the stopwatch and tape measure function correctly.

[1]

[Cambridge IGCSE® Physics 0625/22, Question 7, May/June, 2012]

13 Light

In this chapter, you will find out:

- how to use the law of reflection of light
- how a plane mirror forms an image
- ♦ how to construct ray diagrams for reflection
 - how light is refracted
 - how to use Snell's law to determine the refractive index
 - how to describe total internal reflection
 - how to use ray diagrams to explain how a lens forms a real image
- how a magnifying glass works.

How far to the Moon?

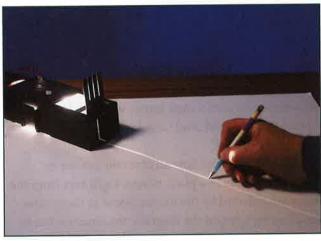
When *Apollo* astronauts visited the Moon, they left behind reflectors on its surface. These are used to measure the distance from the Earth to the Moon. A laser beam is directed from an observatory on Earth (Figure 13.1) so that it reflects back from these reflectors left on the lunar surface. The time taken by the light to travel there and back is measured and, because the speed of light is known, the distance can be calculated.

The Moon travels along a slightly elliptical orbit around the Earth, so that its distance varies between 356 500 km and 406 800 km. The laser measurements of its distance are incredibly accurate – to within 30 cm. This means that they are accurate to within one part in a billion. The Moon is gradually slowing down and drifting away from the Earth. With the help of such precise measurements, it is possible to work out just how quickly it is drifting away.

This experiment makes use of two ideas that we will look at in this chapter: the way that light travels in straight lines, and how light is reflected by mirrors.

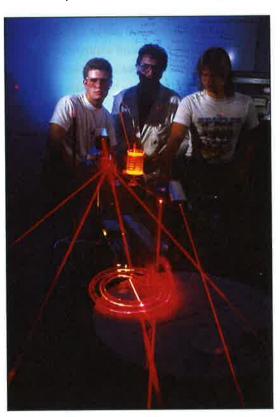
Figure 13.1 A laser beam is directed into space from the Royal Greenwich Observatory (Sussex, UK). The beam reflects off the Moon or a satellite in space. The reflected beam is detected, and the exact distance to the Moon or the satellite can be calculated.

13.1 Reflecting light


Light usually travels in straight lines. It changes direction if it hits a shiny surface, or if it travels from one material into another. This change in direction at a shiny surface such as a mirror is called **reflection**. We look at reflection in this section.

You can see that light travels in a straight line using a ray box, as shown in Figure 13.2. A light bulb produces light, which spreads out in all directions. A ray box produces a broad beam. By placing a narrow slit in the path of the beam, you can see a single narrow beam or ray of light. The ray shines across a piece of paper. You can record its position by making dots along its length. Laying a ruler along the dots shows that they lie in a straight line.

You may see demonstrations using a different source of light, a **laser**. A laser (Figure 13.3) has the great advantage that all of the light it produces comes out in a narrow beam. All of the energy is concentrated in this beam, rather than spreading out in all directions (as with a light bulb). The total amount of energy coming from the laser is probably much less than that from a bulb, but it is much more concentrated. That is why it is dangerous if a laser beam gets into your eye.


Looking in the mirror

Most of us look in a mirror at least once a day, to check on our appearance (Figure 13.4). It is important to us to know that we are presenting ourselves to the rest of the

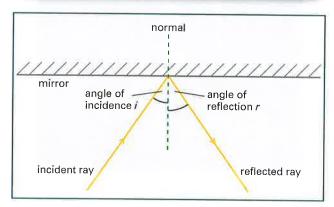
Figure 13.2 A ray box produces a broad beam of light, which can be narrowed down using a metal plate with a slit in it. Marking the line of the ray with dots allows you to record its position.

world in the way we want. Archaeologists have found bronze mirrors over 2000 years old, so the desire to see ourselves clearly has been around for a long time.

Figure 13.3 Students working with laser beams. They are wearing safety glasses to protect their eyes from stray reflections of the beams.

Figure 13.4 Psychologists use mirrors to test the intelligence of animals. Do they recognise that they are looking at themselves? Apes clearly understand that what they see in the mirror is an image of themselves – they make silly faces at themselves. Other animals, such as cats and dogs, do not – they may even try to attack their own reflection.

Modern mirrors give a very clear image. When you look in a mirror, rays of light from your face reflect off the shiny surface and back to your eyes. You seem to see an image of yourself behind the mirror. To understand why this is, we need to use the law of reflection of light.


When a ray of light reflects off a mirror or other reflecting surface, it follows a path as shown in Figure 13.5. The ray bounces off, rather like a ball bouncing off a wall. The two rays are known as the **incident ray** and the **reflected ray**. The **angle of incidence** *i* and the **angle of reflection** *r* are found to be equal to each other. This is the **law of reflection**, which can be written as follows:

angle of incidence = angle of reflection i = r

Note that, to find the angles i and r, we have to draw the **normal** to the reflecting surface. This is a line drawn perpendicular (at 90°) to the surface, at the point where the ray strikes it. Of course, the other two angles (between the rays and the flat surface) are also equal. However, we would have trouble measuring these angles if the surface was curved, so we measure the angles relative to the normal. The law of reflection thus also works for curved surfaces, such as concave and convex mirrors.

Study tip

Remember that angles of incidence and reflection are always measured between the ray and the normal to the surface.

Figure 13.5 The law of reflection of light. The normal is drawn perpendicular to the surface of the mirror. Then the angles are measured relative to the normal. The angle of incidence and the angle of reflection are then equal: i = r.

Activity 13.1 The law of reflection

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.3 Make and record observations, measurements and estimates

Check the law of reflection using a ray box and a plane mirror.

Method

- 1 Stand a small plane mirror on a sheet of white paper. Mark the position of its reflecting surface.
- 2 Arrange a ray box and power supply to give a narrow ray of light.
- 3 Direct the ray of light across the paper so that it strikes the middle of the mirror. Notice the reflected ray.
- 4 Mark two dots on the incident ray and two more dots on the reflected ray. Remove the ray box and the mirror.
- 5 Using the dots as a guide, lay the ruler along the position of the incident ray and draw a line to represent this ray. Repeat with the reflected ray.
- 6 At the point where the rays touch the mirror, draw the normal to the mirror.
- 7 Mark and measure the angles of incidence and reflection. Are they equal?
- **8** Repeat steps **1** to **7** with a different angle of incidence.

The image in a plane mirror

Why do we see such a clear **image** when we look in a plane (flat) mirror? And why does it appear to be behind the mirror?

Figure 13.6 shows how an observer can see an image of a candle in a plane mirror. Light rays from the flame are reflected by the mirror. Some of them enter the observer's eye. In the diagram, the observer has to look forward and slightly to the left to see the image of the candle. Their brain assumes that the image of the candle is in that direction, as shown by the dashed lines behind the mirror. (Our brains assume that light

travels in straight lines, even though we know that light is reflected by mirrors.) The dashed lines appear to be coming from a point behind the mirror, at the same distance behind the mirror as the candle is in front of it. You can see this from the symmetry of the diagram.

The image looks as though it is the same size as the candle. Also, it is (of course) a mirror image, that is, it is left-right reversed or *inverted*. You will know this from seeing writing reflected in a mirror. If you could place the object and its image side-by-side, you would see that they are mirror images of each other, in the same way that your left and right hands are mirror images of each other.

The image of the candle in the mirror is not a real image. A **real image** is an image that can be formed on a screen. If you place a piece of paper at the position of

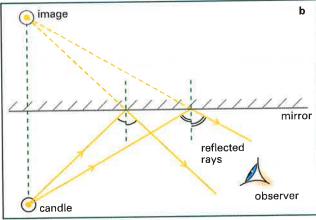


Figure 13.6 a Looking in the mirror, the observer sees an image of the candle. The image appears to be behind the mirror.

b The ray diagram shows how the image is formed. Rays from the candle flame are reflected according to the law of reflection. The dashed lines show that, to the observer, the rays appear to be coming from a point behind the mirror.

the image, you will not see a picture of the candle on it, because no rays of light from the candle reach that spot. That is why we drew dashed lines, to show where the rays *appear* to be coming from. We say that it is a **virtual image**.

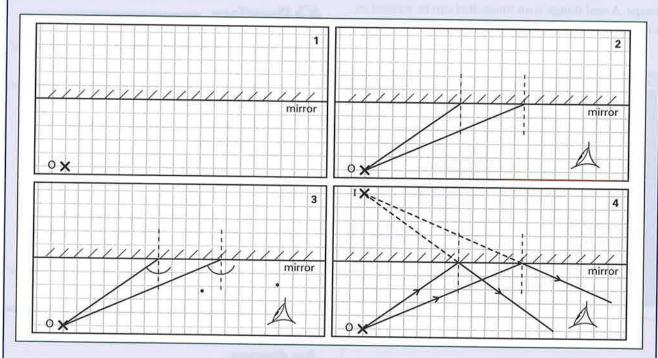
To summarise, when an object is reflected in a plane mirror, its image is:

- the same size as the object
- the same distance behind the mirror as the object is in front of it
- ♦ left-right inverted
- virtual.

Questions

- **13.1 a** Write the word AMBULANCE as it would appear when reflected in a plane mirror.
 - **b** Why is it sometimes written in this way on the front of an ambulance?
- **13.2 a** Draw a diagram to illustrate the law of reflection.
 - **b** Which **two** angles are equal, according to the law?
- 13.3 A ray of light strikes a flat, reflective surface such that its angle of incidence is 30°. What angle does the reflected ray make with the surface?
- **13.4** What does it mean to say that a plane mirror produces a virtual image?

Ray diagrams


Figure 13.6b earlier in this chapter is an example of a ray diagram. Such diagrams are used to predict the position of images in mirrors, or when lenses or other optical devices are being used. The idea is first to draw the positions of things that are known (for example, the candle and the mirror). Then rays of light are drawn. These must be carefully chosen if they are to show up what we want to see. The position of the observer is marked, and then the rays are extrapolated back, to show where they appear to be coming from. These are the dashed lines shown in the diagram. This is known as a construction, and it allows us to mark the position of the image. Worked example 13.1 shows the steps in constructing a ray diagram.

Worked example 13.1

A small lamp is placed 5 cm in front of a plane mirror. Draw an accurate scale diagram, and use it to show that the image of the lamp is 5 cm behind the mirror.

The steps needed to draw the ray diagram are listed below and shown in figure below. (It helps to work on squared paper or graph paper.)

- **Step 1:** Draw a line to represent the mirror, and indicate its reflecting surface, by drawing short lines on the back. Mark the position of the object O.
- Step 2: Draw two rays from O to the mirror. Where they strike the mirror, draw in the normal lines.
- Step 3: Using a protractor, measure the angle of incidence for each ray. Mark the equal angle of reflection.
- **Step 4:** Draw in the reflected rays, and extend them back behind the mirror. The point where they cross is where the image is formed. Label this point I.

From the diagram for Step 4, it is clear that the image is 5 cm from the mirror, directly opposite the object. The line joining O to I is perpendicular to the mirror.

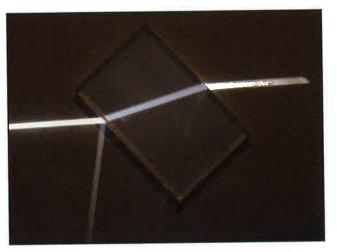
13.2 Refraction of light

If you look down at the bottom of a swimming pool, you may see patterns of shadowy ripples. The surface of the water is irregular. There are always small disturbances on the water, and these cause the rays of sunlight to change direction. Where the pattern is darker, rays of light have been deflected away, producing a sort of shadow. This bending of rays of light

when they travel from one material to another is called **refraction**.

There are many effects caused by the refraction of light. Some examples are the sparkling of diamonds, the way the lens in your eye produces an image of the world around you, and the twinkling of the stars in the night sky. The 'broken stick' effect (Figure 13.7) is another consequence of refraction.

Figure 13.7 The pencil is partly immersed in water. Because of refraction of the light coming from the part of the pencil that is underwater, the pencil appears broken.

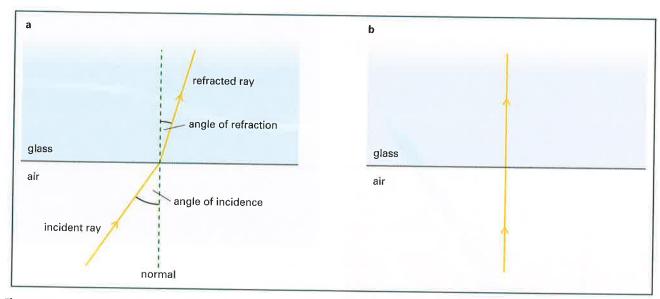

The word 'refraction' is related to the word 'fractured', meaning broken.

Refraction occurs when a ray of light travels from one material into another. The ray of light may change direction. You can investigate this using a ray box and a block of glass or Perspex, as shown in Figure 13.8. Note that the ray travels in a straight line when it is in the air outside the block, and when it is inside the block. It only bends at the point where it enters or leaves the block, so it is the *change of material* that causes the bending.

From Figure 13.8, you will notice that the direction in which the ray bends depends on whether it is entering or leaving the glass.

- The ray bends towards the normal when entering the glass.
- ◆ The ray bends away from the normal when leaving the glass.

One consequence of this is that, when a ray passes through a parallel-sided block of glass or Perspex, it


Figure 13.8 Demonstrating the refraction of a ray of light when it passes through a rectangular block of glass or Perspex. The ray bends as it enters the block. As it leaves, it bends back to its original direction.

returns to its original direction of travel, although it is shifted to one side. When we look at the world through a window, we are looking through a parallel-sided sheet of glass. We do not see a distorted image because, although the rays of light are shifted slightly as they pass through the glass, they all reach us travelling in their original direction.

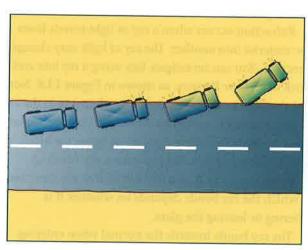
Changing direction

Figure 13.9a shows the terms used for refraction. As with reflection, we define angles relative to the normal. The incident ray strikes the block. The angle of incidence i is measured from the ray to the normal. The **refracted ray** travels on at the **angle of refraction** r, measured relative to the normal. (Note that, when we discussed reflection, we used r for the angle of reflection; here it stands for the angle of refraction.)

A ray of light may strike a surface head-on, so that its angle of incidence is 0°, as shown in Figure 13.9b. In this case, it does not bend – it simply passes straight through and carries on in the same direction. Usually we say that refraction is the bending of light when it passes from one material to another. However, we should bear in mind that, when the light is perpendicular to the boundary between the two materials, there is no bending.

Figure 13.9 a Defining the terms used for refraction. The normal is drawn perpendicular to the surface at the point where the ray passes from one material to another. The angles of incidence and refraction are measured relative to the normal. **b** When a ray strikes the glass at 90°, it carries straight on without being deflected.

Study tip


Remember that light rays are straight lines. They only bend (change direction) where they reflect off a surface, or where they pass into a different material.

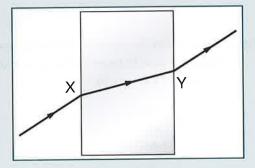
Explaining refraction

Why does light change direction when it passes from one material to another? The answer lies in the way its speed changes. Light travels fastest in a vacuum (empty space) and almost as fast in air. It travels more slowly in glass, water and other transparent substances.

One way to explain why a change in speed leads to a change in direction is shown in Figure 13.10. A truck is driving along a road across the desert. The driver is careless, and allows the wheels on the left to drift off the road onto the sand. Here, they spin around, so that the left-hand side of the truck moves more slowly. The right-hand side is still in contact with the road and keeps moving quickly, so that the truck starts to turn to the left.

The boundary between the two materials is the edge of the road. The normal is at right angles to the road. The truck has veered to the left, so its direction has moved towards the normal. Thus we would expect a ray of light to move towards the normal when it enters a material where it moves more slowly. This is indeed what we saw with glass (Figure 13.8). Light travels more slowly in glass than in air, so it bends towards the normal as it enters glass.

Figure 13.10 To explain why a change in speed explains the bending caused by refraction, we picture a truck whose wheels slip off the road into the sand. The truck veers to the side because it cannot move so quickly through the sand.


Activity 13.2 Investigating refraction

Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- AO3.2 Plan experiments and investigations
- AO3.3 Make and record observations, measurements and estimates
- AO3.4 Interpret and evaluate experimental observations and data

Use a ray box to investigate the refraction of light by a glass or plastic block.

- 1 Place a rectangular glass or plastic block in the middle of a sheet of white paper. Draw around the block to record its position.
- 2 Using a ray box, direct a ray of light at the midpoint of one of the long sides of the block, as shown in the diagram.

- 3 Observe the refracted ray passing through the block.
- 4 Mark two dots on the incident ray to record its position. To record the refracted ray, mark where the light enters and leaves the block (points X and Y in the diagram). Remove the ray box and the block.
- 5 Using the dots as a guide, lay the ruler along the position of the incident ray and draw a line to represent this ray. Repeat with the refracted ray.
- **6** Mark the angle of incidence *i* and the angle of refraction *r*. Measure these angles and record their values.
- 7 Repeat the experiment for three or four more values of the angle of incidence. Record your results in a table.
- 8 Calculate the value of $\frac{\sin i}{\sin r}$ for each value of *i*. Is this quantity constant? (If you study Snell's law on p. 186, you will find out why this quantity is important.)
- **9** If you have blocks of different materials, investigate whether one material causes more refraction than another.

Questions

- 13.5 Draw a diagram to show what we mean by the *angle of incidence* and the *angle of refraction* for a refracted ray of light.
- 13.6 A ray of light passes from air into a block of glass. Does it bend *towards* or *away from* the normal?
- **13.7 a** Draw a diagram to show how a ray of light passes through a parallel-sided block of glass or Perspex.
 - **b** What can you say about its final direction of travel?

- **13.8** A vertical ray of light strikes the horizontal surface of some water.
 - **a** What is its angle of incidence?
 - **b** What is its angle of refraction?
- 13.9 When a ray of light passes from air to glass, is the angle of refraction greater than, or less than, the angle of incidence?
- **13.10** Why do we see a distorted view when we look through a window that is covered with raindrops?

Refractive index

Light travels very fast – as far as we know, nothing can travel any faster than light. The **speed of light** as it travels though empty space is exactly:

speed of light =
$$299792458 \,\text{m/s}$$

This fundamental quantity is given its own symbol, *c*. For most purposes we can round off the value to:

$$c = 300\,000\,000\,\text{m/s} = 3 \times 10^8\,\text{m/s}$$

When a ray of light passes from air into glass, it slows down and bends towards the normal. The quantity that describes how much light is slowed down is the **refractive index**. If the speed of light is halved when it enters a material, the refractive index is 2, and so on. Hence we can write an equation for the refractive index *n* of a material, as shown.

Key definition

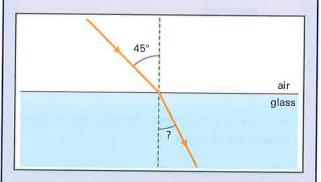
refractive index $n = \frac{\text{speed of light in a vacuum}}{\text{speed of light in the material}}$

Water has a refractive index n = 1.33. This means that light travels 1.33 times as fast in a vacuum, compared to its speed in water.

Table 13.1 shows the speed of light in different materials. The third column shows the factor by which the light is slowed down – in other words, the refractive index of the material.

Study tip

Refractive index is just a number – it has no units. This is because it is one speed divided by another – the units cancel out.


Snell's law

There is a law that relates the size of the angle of refraction *r* to the angle of incidence *i*. This is **Snell's law**. It also involves the refractive index, since the greater the refractive index, the more a ray is bent. The law is written in the form of an equation:

$$n = \frac{\sin i}{\sin r}$$

Worked example 13.2

A ray of light strikes a glass block with an angle of incidence of 45°. The refractive index of the glass is 1.6. The situation is shown in figure shown below. What will be the angle of refraction?

Step 1: Write down what you know and what you want to know.

$$i = 45^{\circ}$$

$$n = 1.6$$

$$r = ?$$

Step 2: Write down the equation for Snell's law. Since we want to know *r*, rearrange it to make sin *r* the subject.

$$n = \frac{\sin t}{\sin r}$$
$$\sin r = \frac{\sin t}{n}$$

Step 3: Substitute values and calculate $\sin r$.

$$\sin r = \frac{\sin 45^{\circ}}{1.6} = 0.442$$

Step 4: Use the \sin^{-1} function on your calculator to find r. (This will tell you the angle whose sine is 0.442.)

$$r = \sin^{-1} 0.442 = 26.2^{\circ}$$

You can see that Snell's law correctly predicts that the ray will be deflected towards the normal.

Material	Speed of light/m/s	Speed in vacuum Speed in material
vacuum	2.998×10 ⁸	1 exactly
air	2.997×10 ⁸	1.0003
water	2.3×10 ⁸	1.33
Perspex	2.0×10 ⁸	1.5
glass	$(1.8-2.0)\times10^8$	1.5–1.7
diamond	1.25×10 ⁸	2.4

Table 13.1 The speed of light in some transparent materials. (The value for a vacuum is shown, for comparison.) Note that the values are only approximate.

Worked example 13.2 shows how to use this equation to find the angle through which a ray is refracted. The equation can also be used to find the value of the refractive index of a material: simply measure values of i and r and substitute them in the equation.

Study tip

When using Snell's law, make sure that you get the ratio of refractive indexes the right way up.

Questions

In these questions you will need to use the fact that the speed of light in a vacuum is 3.0×10^8 m/s.

- **13.11** Look back at Table 13.1. What is the value of the refractive index of diamond?
- **13.12** The figure shows what happens when a ray of light enters blocks of two different materials, A and B.

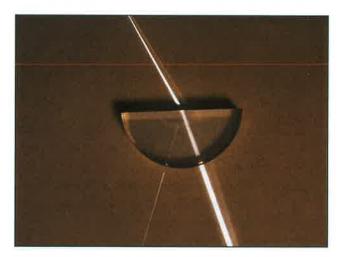
- **a** In which material does the light travel more slowly, A or B? Explain how you can tell from the diagrams.
- **b** Which material, A or B, has the greater refractive index?

- **13.13** Light travels more quickly through water than through glass.
 - **a** Which has the greater refractive index, water or glass?
 - **b** If a ray passes from glass into water, which way will it bend: towards or away from the normal?
- 13.14 The speed of light in a block of glass is found to be 1.90×10^8 m/s. Calculate the refractive index of the glass.
- **13.15** A solution of sugar in water is found to have a refractive index of 1.38. Calculate the speed of light in the solution.
- **13.16** Perspex is a form of transparent plastic. It has a refractive index n = 1.50. A ray of light strikes the flat surface of a Perspex block with an angle of incidence of 40° . What will be the angle of refraction?

13.3 Total internal reflection

If you have carried out a careful investigation of refraction using a ray box and a transparent block, you may have noticed something extra that happens when a ray strikes a block. A reflected ray also appears, in addition to the ray that is refracted. You can see this in Figure 13.8, but it was ignored in

Figure 13.9. When the ray strikes the block, some of the light passes into the block and is refracted, and some is reflected. When it leaves the block, again some leaves the block and is refracted, and some is reflected. These reflected rays obey the law of reflection:


angle of incidence = angle of reflection

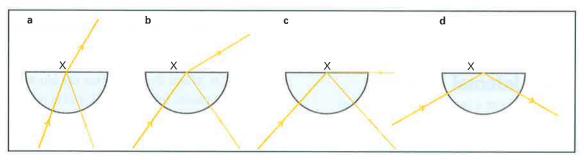
These reflected rays can be a nuisance. If you try to look downwards into a pond or river to see if there are any fish there, your view may be spoilt by light reflected from the surface of the water. You see a reflected image of the sky, or of yourself, rather than what is in the water. On a sunny day, reflected light from windows or water can be a hazard to drivers.

To see how we can make use of reflected rays, you can use the apparatus shown in Figure 13.11. A ray box shines a ray of light at a semicircular glass block. The ray is always directed at the curved edge of the block, along the radius. This means that it enters the block along the normal, so that it is not bent by refraction. Inside the glass, the ray strikes the midpoint of the flat side, which we shall call point X.

What happens next? This depends on the angle of incidence of the ray at the point X. The various possibilities are listed below and are shown in Figure 13.12.

a If the angle of incidence is small, most of the light emerges from the block. There is a faint reflected ray

Figure 13.11 Using a ray box to investigate reflection when a ray of light strikes a glass or Perspex block. The ray enters the block without bending, because it is directed along the radius of the block.


- inside the glass block. The refracted ray bends away from the normal.
- **b** If the angle of incidence is increased, more light is reflected inside the block. The refracted ray bends even further away from the normal.
- c Eventually, at one particular angle, the refracted ray emerges along and parallel to the surface of the block. Most of the light is reflected inside the block.
- **d** Now, at an even greater angle of incidence, all of the light is reflected inside the block. No refracted ray emerges from the point X.

We have been looking at how light is reflected inside a glass block. We have seen that, if the angle of incidence is greater than a particular value, known as the **critical angle**, the light is entirely reflected inside the glass. This phenomenon is known as **total internal reflection (TIR)**:

- total, because 100% of the light is reflected
- *internal*, because it happens inside the glass
- *reflection*, because the ray is entirely reflected.

For total internal reflection to happen, the angle of incidence of the ray must be greater than the critical angle. The critical angle depends on the material being used. For glass, it is about 42° (though this depends on the composition of the glass). For water, the critical angle is greater, about 49°. For diamond, the critical angle is small, about 25°. Hence rays of light that enter a diamond are very likely to be totally internally reflected, so they bounce around inside, eventually emerging from one of the diamond's cut faces. That explains why diamonds are such sparkly jewels.

If the angle of incidence of a ray at a surface is greater than or equal to the critical angle, it will be totally internally reflected.

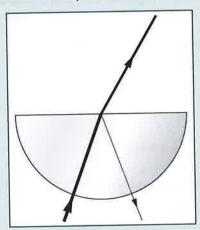
Figure 13.12 How a ray of light is reflected or refracted inside a glass block depends on the angle of incidence. **a**, **b** For angles less than a certain angle, called the critical angle, some of the light is reflected and some is refracted. **c** At the critical angle, the angle of refraction is 90°. **d** At angles of incidence greater than the critical angle, the light is totally internally reflected – there is no refracted ray.

Activity 13.3 Total internal reflection

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.2 Plan experiments and investigations


AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

Use a ray box and a semicircular block to observe total internal reflection.

- 1 Place a semicircular glass or plastic block in the middle of a sheet of white paper. Draw around the block to record its position.
- 2 Using a ray box, direct a ray of light at the curved surface of the block so that it passes straight in and reaches the midpoint of the flat side of the block, as shown in the diagram.
- 3 Observe the refracted ray passing through the block. Observe also the reflected ray.
- 4 Mark two dots on the incident ray to record its position. Repeat with the reflected ray and the refracted ray. Remove the ray box and the block.
- 5 Using the dots as a guide, lay the ruler along the position of the incident ray and draw a line to

represent this ray. Repeat with the reflected ray and the refracted ray.

- **6** Draw the normal to the flat surface of the block. Mark the angle of incidence *i* and the angle of refraction *r*. Measure these angles and record their values.
- 7 Replace the block and the ray box on a fresh sheet of paper. Gradually move the ray round (increasing the angle of incidence) until the refracted ray travels along the surface of the block. (The angle of refraction is now 90°.)
- 8 Mark and draw the rays. The value of the angle of incidence is now the critical angle.
- **9** Increase the angle of incidence still further and observe the reflected ray. Is there a refracted ray?

Questions

- **13.17** Explain the meaning of the words *total* and *internal* in the expression 'total internal reflection'.
- **13.18** The critical angle for water is 49°. If a ray of light strikes the upper surface of a pond at an angle of incidence of 45°, will it be totally internally reflected? Explain your answer.

Critical angle and refractive index

As we have seen, the critical angle (symbol c) depends on the material through which a ray is travelling. The greater the refractive index of the

material, the smaller the critical angle (diamond is the example we saw above). We can use Snell's law to see how critical angle c and refractive index n are related.

When the angle of incidence is equal to the critical angle c, the refracted ray bends through 90° (see Figure 13.12c). The angle of refraction is thus 90°. Substituting in the equation for Snell's law gives:

$$n = \frac{\sin i}{\sin r} = \frac{\sin 90^{\circ}}{\sin c}$$

But $\sin 90^{\circ} = 1$, so we have:

$$n = \frac{1}{\sin c}$$
 or $\sin c = \frac{1}{n}$

Worked example 13.3

Find the critical angle for diamond (refractive index n = 2.40).

Substituting the value of n in the equation:

$$\sin c = \frac{1}{n}$$

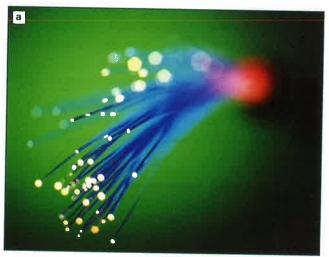
gives:

$$\sin c = \frac{1}{2.40} = 0.417$$

and hence (using a calculator to find sin-10.417):

$$c = 24.6^{\circ}$$

Optical fibres


A revolution in telecommunications has been made possible by the invention of fibre optics. Telephone messages and other electronic signals such as Internet computer messages or cable TV signals are passed along fine glass fibres in the form of flashing laser light – a digital signal. Figure 13.13a shows just how fine these fibres can be. Each of these fibres is capable of carrying thousands of telephone calls simultaneously.

Inside a fibre, light travels along by total internal reflection (see Figure 13.13b). It bounces along inside the fibre because, each time it strikes the inside of the fibre, its angle of incidence is greater than the critical angle. Thus no light is lost as it is reflected. The fibre can follow a curved path and the light bounces along inside it, following the curve. For signals to travel over long distances, the glass used must be of a very high purity, so that it does not absorb the light.

Optical fibres are also used in medicine. An endoscope is a device that can be used by doctors to see inside a patient's body – for example, to see inside the stomach. One bundle of fibres carries light down into the body (it is dark in there), while another bundle carries an image back up to the user. The endoscope may also have a small probe or cutting tool built in, so that minor operations can be performed without the need for major surgery.

Questions

- **13.19** The refractive index of water is n = 1.33.
 - a Calculate the critical angle for water.
 - **b** Using a protractor, draw an accurate ray diagram to show how a ray of light, striking the internal surface of water at the critical angle, is refracted.
- **13.20** The critical angle for a new type of plastic is found to be 40°. What is the refractive index of this material?
- **13.21** Sketch a diagram to show how a ray of light can travel along a curved glass fibre. Indicate the points where total internal reflection occurs.
- **13.22** Why must high-purity glass be used for optical fibres used in telecommunications?

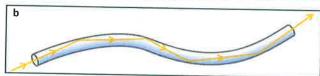


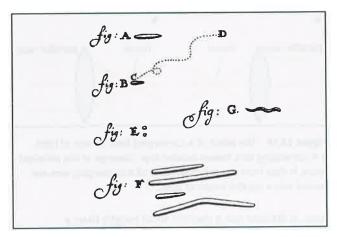
Figure 13.13 The use of fibre optics has greatly increased the capacity and speed of the world's telecommunications networks. Without this technology, cable television and the Internet would not be possible. a Each of these very fine fibres of high-purity glass can carry many telephone messages simultaneously. b Light travels along a fibre by total internal reflection. Because the reflection is total, and the glass is so pure, the light can travel many kilometres along a single fibre.

13.4 Lenses

We are all familiar with lenses in everyday life – in spectacles and cameras, for example. The development of high-quality lenses has had a profound effect on science. In 1609, using the newly invented telescope, Galileo discovered the moons of Jupiter and triggered a revolution in astronomy. In those days, scientists had to grind their own lenses starting from blocks of glass, and Galileo's skill at this was a major factor in his discovery.

Later in the 17th century, a Dutch merchant called Anton van Leeuwenhoek managed to make microscope lenses that gave a magnification of 200 times. He used these to look at the natural world around him. He was amazed to find a wealth of tiny microorganisms, including bacteria, that were invisible to the naked eye (Figure 13.14). This provided the clue to how infectious diseases might be spread. Previously people thought infections were carried by smells or by mysterious vapours. A revolution in medicine had begun.

Converging and diverging lenses


Lenses can be divided into two types, according to their effect on light (Figure 13.15):

- converging lenses are fatter in the middle than at the edges
- diverging lenses are thinner in the middle than at the edges.

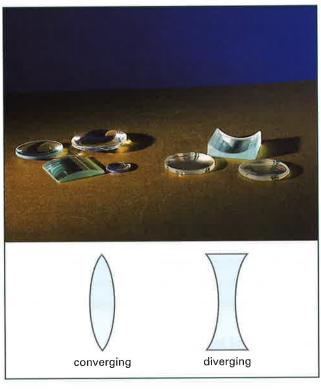

You have probably used a magnifying glass to look at small objects. This is a converging lens. You may even have used a magnifying glass to focus the rays of the Sun onto a piece of paper, to set fire to it. (Over a thousand years ago, an Arab scientist described how people used lenses for starting fires.) This gives a clue to the name 'converging'.

Figure 13.16a shows how a converging lens focuses the parallel rays of the Sun. On one side of the lens, the rays are parallel to the axis of the lens. After they pass through the lens, they converge on a single point, the **principal focus** (or **focal point**). After they have passed through the principal focus, they spread out again.

So a converging lens is so-called because it makes parallel rays of light converge. The principal focus is the point where the rays are concentrated together, and where a piece of paper needs to be placed if it is to be

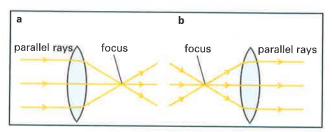


Figure 13.14 Bacteria cannot be seen with the naked eye. These drawings were made by Anton van Leeuwenhoek in 1683 using an early microscope. They show bacteria he obtained by scraping material from between his teeth.

Figure 13.15 The lenses on the left are converging lenses, which are fattest at the middle. On the right are diverging lenses, which are thinnest at the middle. They are given these names because of their effect on parallel rays of light. Usually we simply draw the cross-section of the lens, to indicate which type we are considering.

burned. The distance from the centre of the lens to the principal focus is called the focal length of the lens. The fatter the lens, the closer the principal focus is to the

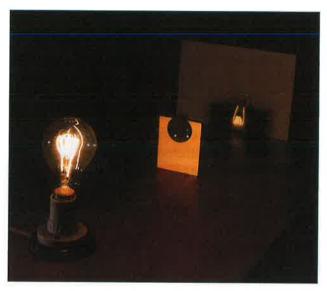
Figure 13.16 The effect of a converging lens on rays of light. **a** A converging lens makes parallel rays converge at the principal focus. **b** Rays from the principal focus of a converging lens are turned into a parallel beam of light.

lens. A fat lens has a shorter focal length than a thin lens.

A converging lens can be used 'in reverse' to produce a beam of parallel rays. A source of light, such as a small light bulb, is placed at the principal focus. As they pass through the lens, the rays are bent so that they become a parallel beam (Figure 13.16b). This diagram is the same as Figure 13.16a, but in reverse.

Lenses work by refracting light. When a ray strikes the surface of the lens, it is refracted towards the normal. When it leaves the glass of the lens, it bends away from the normal. The clever thing about the shape of a converging lens is that it bends all rays just enough for them to meet at the principal focus.

Study tip


Remember that light rays only bend at the points where they enter and leave the lens. They do not bend inside the lens. But to make things easier when we draw ray diagrams, we only show rays bending once, at the centre of the lens.

Forming a real image

When the Sun's rays are focused onto a piece of paper, a tiny image of the Sun is created. It is easier to see how a converging lens makes an image by focusing an image of a light bulb or a distant window onto a piece of white paper. The paper acts as a screen to catch the image. Figure 13.17 shows an experiment in which an image of a light bulb (the object) is formed by a converging lens.

There are some things to note. In this experiment, the image is:

- *inverted* (upside down)
- reduced (smaller than the object)

Figure 13.17 Forming a real image of a light bulb using a converging lens. The image is upside down on the screen at the back right.

- *nearer to* the lens than the object
- real.

We say that the image is real, because light really does fall on the screen to make the image. If light only appeared to be coming from the image, we would say that the image was virtual. The size of the image depends on how fat or thin the lens is.

We can explain the formation of this real image using a **ray diagram**. The steps needed to draw an accurate ray diagram are listed below and are shown in Figure 13.18. (It helps to work on squared paper or graph paper.)

- **Step 1:** Draw the lens (a simple outline shape will do) with a horizontal axis through the middle of it.
- **Step 2:** Mark the positions of the principal focuses F on either side, at equal distances from the lens. Mark the position of the object O, an arrow standing on the axis.
- **Step 3:** Draw ray 1, a straight line from the top of the arrow and passing undeflected through the middle of the lens.
- Step 4: Draw ray 2, from the top of the arrow parallel to the axis. As it passes through the lens, it is deflected down through the principal focus.

 Look for the point where the two rays cross.

 This is the position of the top of the image I.

With an accurately drawn ray diagram, you can see that the image is inverted, reduced and real.

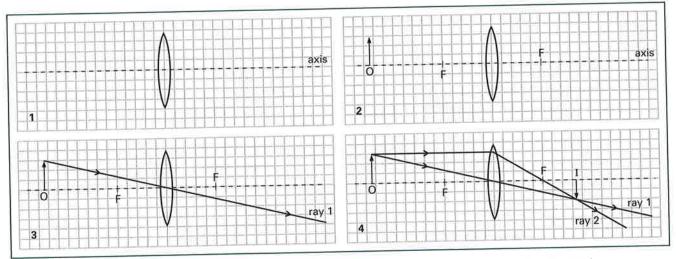


Figure 13.18 A ray diagram can be used to show how an image is formed by a converging lens. The steps are given in the text.

Note that we do not bother to draw ray 2 bending twice, at the two surfaces of the lens. It is easier to show it bending once, in the middle of the lens, though this is not a correct representation of what really happens.

So, to construct a ray diagram like this, draw two rays starting from the top of the object:

- ray 1, undeflected through the centre of the lens
- ray 2, parallel to the axis and then deflected through the principal focus.

Activity 13.4 Investigating converging lenses

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

AO3.3 Make and record observations, measurements and estimates

Measure the focal length of a lens and draw an accurate ray diagram.

- 1 Stand at the opposite end of the room to a window (or a bright lamp). Hold a converging lens in one hand and a card screen in the other. Position the lens and screen so that a clear (focused) image of the window appears on the screen.
- **2** Measure the distance from the lens to the screen. This is equal to the focal length *f* of the lens.
- 3 Now set up the bulb and power supply on the bench. Position the lens so that it is at a distance of f+5 cm from the bulb (for example, if the

- focal length is 15 cm, place the lens 20 cm from the bulb).
- 4 Place the screen on the opposite side of the lens from the bulb. Move it until you obtain a focused image of the bulb on the screen.
- 5 Measure the distances from the lens to the screen and from the lens to the bulb.
- 6 Draw an accurate ray diagram, either full size or to scale, as follows:
 - draw the lens and mark its two principal focuses, F, one on either side of the lens
 - draw an arrow to represent the object (the bulb) at the correct distance from the lens
 - draw two rays, one parallel to the axis and deflected through F, the other straight through the centre of the lens
 - using the point where the rays cross, draw in the image.
- 7 On your diagram, measure the distance from the lens to the image. Is the answer the same as you found by experiment?
- 8 Extend the experiment. Measure the size of the bulb and of its image. Is the image magnified or reduced? Compare with your ray diagram.

Questions

- **13.23** Draw a diagram to show the difference in shape between a converging lens and a diverging lens.
- **13.24** Draw a ray diagram to show how a converging lens focuses parallel rays of light.
- 13.25 How would you alter your diagram in question 13.24 to show how a converging lens can produce a beam of parallel rays of light?
- **13.26** What is meant by the *principal focus* (or *focal point*) of a converging lens?
- **13.27** What is the difference between a *real* image and a *virtual* image?
- **13.28** Look at the ray diagram shown earlier in Figure 13.18. How does it show that the image formed by a converging lens is inverted?

Magnifying glasses

A magnifying glass is a converging lens. You hold it close to a small object and peer through it to see a magnified image. Figure 13.19 shows how a magnifying glass can help to magnify print for someone with poor eyesight.

The object viewed by a magnifying glass is closer to the lens than the principal focus. This allows us to draw the ray diagram shown in Figure 13.20. In the same way as in Figure 13.18, we draw two rays from the top of the object O, rays 1 and 2:

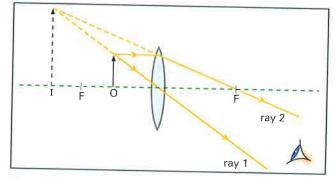
- ray 1 is undeflected, as it passes through the centre of the lens
- ray 2 starts off parallel to the axis and is deflected by the lens so that it passes through the principal focus.

Rays 1 and 2 do not cross over each other. They are diverging (spreading apart) after they have passed through the lens. However, by extending the rays

backwards, as shown by the dashed lines, we can see that they both appear to be coming from a point behind the object. This is the position of the image I. We draw dashed lines because light does not actually travel along these parts of the rays. This tells us that the image formed is virtual. We cannot catch the image on a screen, because there is no light there.

From the ray diagram (Figure 13.20), we can see the following features of the image produced by a magnifying glass. The image is:

- upright (the right way up, not inverted)
- magnified (bigger than the object)
- further from the lens than the object
- virtual (not real).


So, if you read a page of a book using a magnifying glass, the image you are looking at is behind the page that you are reading.

Study tip

When drawing a ray diagram, remember that a ray passing through the centre of a lens does not bend.

Figure 13.19 This long converging lens is designed to help people to read. It produces a magnified image of a line of print. The user simply slides it down the page.

Figure 13.20 A ray diagram to show how a magnifying glass works. The object is between the lens and the focus. The image produced is virtual. To find its position, the rays have to be extended back (dashed lines) to the point where they cross.

Questions

- **13.29** Look at Figure **13.20**. How can you tell from the diagram that the image formed by the magnifying glass is a virtual image?
- **13.30 a** A converging lens has focal length 5 cm. An object is placed 3 cm from the centre

- of the lens, on the principal axis. Draw an accurate ray diagram to represent this.
- **b** Use your diagram to determine the distance of the virtual image formed from the lens.

Summary

You should know:

- the law of reflection
- how a plane mirror forms an image
- · about refraction of light
- - about total internal reflection and the critical angle
- 6 how total internal reflection is used
 - about converging lenses
 - how to draw ray diagrams for a converging lens
- ♠ how a magnifying glass produces an image.

End-of-chapter questions

- 1 a Draw a diagram to show how a ray of light is reflected by a plane mirror. Mark the normal and the angles of incidence and reflection.
 - **b** Write an equation that shows how these angles are related by the law of reflection. Write the equation both in words and in symbols.
- 2 Copy and complete the sentences below, choosing the correct words, to describe the image formed in a plane mirror.
 - **a** The image in a plane mirror is *real / virtual*.
 - **b** It is bigger than / smaller than / the same size as the object.
 - c It is as far behind the mirror as the *object / image* is in front.
 - **d** It is left-right inverted / upside down.
- 3 Draw a diagram to show how a ray of light is refracted when it passes from one material to another. Mark the normal and the angles of incidence and refraction.

- **a** Write an equation relating the refractive index of a material to the speed of light in a vacuum and the speed of light in the material.
 - b Here is the equation for Snell's law: $n = \frac{\sin i}{\sin r}$. Copy the equation and state what the symbols n, i and r stand for.
- Draw a diagram to show how a ray of light is refracted when it strikes the internal surface of a piece of glass at an angle smaller than the critical angle. Label the incident, refracted and reflected rays.
- 6 Draw a diagram to show how a converging lens causes parallel rays of light to be focused.

- 7 Copy and complete the sentences below, choosing the correct words, to describe how a magnifying glass works.
 - a A converging | diverging lens can act as a magnifying glass.
 - **b** The object must be placed at / closer than / further than the principal focus.
 - c The image formed is real / virtual and is magnified / reduced.
- 8 The law of reflection says that: 'When a ray of light is reflected at a surface, the *angle of incidence* is equal to the *angle of reflection*.'

Draw a diagram to indicate how a ray of light is reflected by a flat mirror, and mark the **two** angles mentioned in the law.

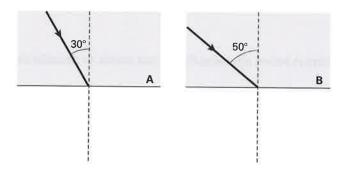
[4]

- 9 Windows usually have a flat sheet of glass, so that we can see clearly through them. Frosted glass has an irregular surface, so that we do not see a clear image through it.
 - a Draw a ray diagram to show how a ray of light passes through a parallel-sided glass block if it hits the glass at 90° (that is, perpendicular to the glass).

[2]

b Draw a ray diagram to show how a ray of light passes through a parallel-sided glass block if it hits the glass at an angle other than 90° (that is, obliquely to the glass).

[3]


[4]

[3]

c Explain why we can see clearly through a flat sheet of glass, even though light is refracted as it passes through.

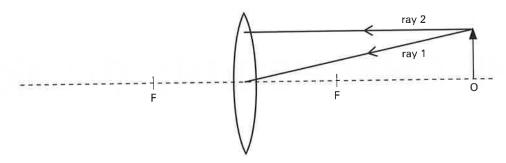
[1]

10 The diagram shows two blocks of a material whose critical angle is 40° . In block A, the ray strikes the inner surface with an angle of incidence of 30° . In block B, the ray's angle of incidence is 50° .

- a Copy and complete each diagram to show what happens when the ray strikes the surface.
- **b** Use the diagrams to explain what is meant by *total internal reflection*.

a Draw an accurate ray diagram to show where the image of the lamp in the mirror is formed.

[4]


b Explain how you have used the law of reflection in drawing your diagram.

[2]

c What does it means to say that the image of the lamp is a virtual image?

[2]

12 An incomplete ray diagram, which represents the following situation, is shown.

A converging lens has a focal length of 4.0 cm. Its principal focuses are marked F. An object O is placed at a distance of 10 cm from the lens. Ray 1 passes through the centre of the lens. Ray 2 is parallel to the axis of the lens.

a Using the measurements given, carefully and accurately copy and complete the ray diagram, on squared paper or graph paper, to find the position of the image formed by the lens.

[4]

b Explain whether your diagram shows that the image is real or virtual.

[2]

c Explain whether your diagram shows that the image is magnified or diminished (smaller than the object).

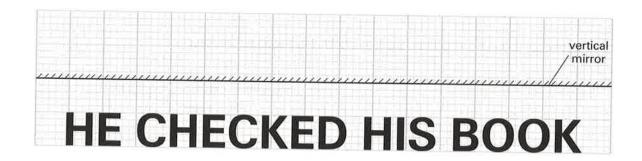
[2]

d Explain whether your diagram shows that the image is upright or inverted.

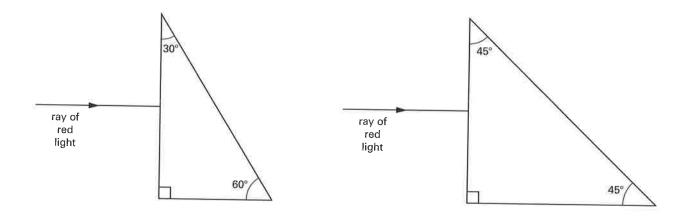
[1]

13 a The diagram shows a point object P above a horizontal plane mirror.

Copy the diagram carefully and on your copy and:


i mark and label the position of the image of P

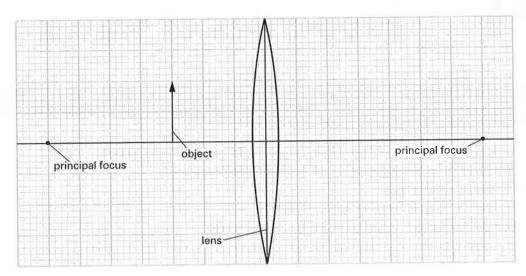
[2]


ii draw a line showing how a ray of light travels from the object to the eye.

[2]

b A boy carefully writes HE CHECKED HIS BOOK on a piece of graph paper. He lays the paper on the table and then positions a vertical mirror as shown in the diagram.

Which word of the reflection of the sentence in the mirror looks different from that written on the paper? [1] c The two prisms shown in the diagram below are made of glass. A ray of red light enters each prism from the air, as shown.


The critical angle for red light at the glass–air boundary is 42° .

Copy this diagram carefully and complete the paths of the rays through the prisms and out into the air again.

[5]

[Cambridge IGCSE® Physics 0625/23, Question 7, October/November, 2011]

14 A converging lens has a focal length of 7.0 cm. An object of height 2.0 cm is placed 3.0 cm from the centre of the lens. The diagram is a grid that shows the arrangement of the object, the lens and the two principal foci (principal focuses; focal points).

- **a** i Make a full-scale copy of the diagram on graph paper. By drawing on your diagram, show how the lens forms an image of the object.
- [3]

ii State two features of the image.

[2]

b i Determine the height of the image.

- [1]
- ii State the name of one device where a lens is used in the way shown in the diagram.
- [1]

[Cambridge IGCSE® Physics 0625/33, Question 7, October/November, 2012]

14 Properties of waves

In this chapter, you will find out:

- how to describe a wave in terms of speed, amplitude, frequency and wavelength
- the differences between transverse waves and longitudinal waves
- S ◆ how to calculate wave speed
 - how to describe reflection and refraction of waves
- how to explain reflection, refraction and diffraction of waves.

All at sea!

It cannot be much fun to be adrift in a small boat on a rough sea, being tossed up and down. For some birds, this is a regular experience. Many seabirds spend the whole winter on the open sea, at a time when the sea is at its roughest (Figure 14.1). The waves may be 20 m high, enough to dwarf a two-storey house, but the birds feel safer here than they would on the cliffs, where they nest in the spring. Guillemots, for example, cluster together in 'rafts', carried up and down by the waves. It is this up-and-down motion that is liable to make *you* feel sea-sick if you are on board a ship in stormy weather.

Figure 14.1 Many seabirds such as guillemots spend the whole of the winter on the open ocean. They gather together in 'rafts' and spend their days and nights riding up and down on the waves.

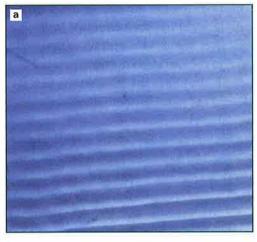
When waves reach the beach, they start to break. The bottom of the wave drags on the seabed and slows down. The top of the wave carries on and gradually tips over to form a breaker. Breaking waves like this are the natural home of the surfer (Figure 14.2).

Physicists talk about light waves, sound waves, electromagnetic waves, and so on. The idea of a wave is a very useful model in physics. It is not obvious that light and sound are similar to waves on the sea. In this chapter, we will see how water waves *can* act as a good model for both light and sound. The water waves that we will be thinking of are more like those on the open sea than breakers on a beach.

Figure 14.2 Surfers look out for waves that are beginning to break. The top of the wave is tipping over, and this provides the push they need to start them moving along with the crest of the wave.

14.1 Describing waves

Physicists use waves as a **model** to explain the behaviour of light, sound and other phenomena. Waves are what we see on the sea or a lake, but physicists have a more specialised idea of waves. We can begin to understand this model in the laboratory using a *ripple tank* (Figure 14.3). A ripple tank is a shallow glass-bottomed tank containing a small amount of water. A light shining downwards through the water casts a shadow of the **ripples** on the floor below, showing up the pattern that they make.


Figure 14.4 shows two patterns of ripples, straight and circular, which are produced in different ways.

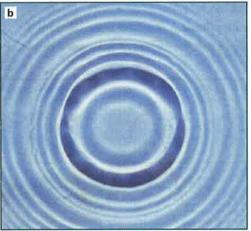

- a One way of making ripples on the surface of the water in a ripple tank is to have a wooden bar that just touches the surface of the water. The bar vibrates up and down at a steady rate. This sends equally spaced straight ripples across the surface of the water.
- b A spherical dipper can produce a different pattern of ripples. The dipper just touches the surface of the water. As it vibrates up and down, equally spaced circular ripples spread out across the surface of the water.

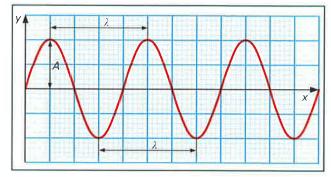
Figure 14.3 The ripples on the surface of the water in this ripple tank are produced by the spherical dippers attached to the bar, which vibrates up and down. The pattern of the ripples is seen easily by shining a light downwards through the water. This casts a shadow of the ripples on the floor beneath the tank.

In each case, the ripples are produced by something vibrating up and down *vertically*, but the ripples move out *horizontally*. The vibrating bar or dipper pushes water molecules up and down. Each molecule drags its neighbours up and down. These then start their neighbours moving, and so on. This may make you think of the seabirds we discussed, floating on the rough sea. The waves go past the birds. The birds simply float up and down on the surface of the water.

How can these patterns of ripples be a model for the behaviour of light? The straight ripples are like a beam of light, perhaps coming from the Sun. The ripples move straight across the surface of the water, just as light from the Sun travels in straight lines. The circular ripples spreading out from a vibrating dipper are like light spreading out from a lamp. (The dipper is

Figure 14.4 Two patterns of ripples on water. **a** Straight ripples are a model for a broad beam of light. **b** Circular ripples are a model for light spreading out from a lamp.

the lamp.) Throughout this chapter, we will gradually build up the idea of how ripples on the surface of water can be a model for the behaviour of light, other electromagnetic waves and sound.


Wavelength and amplitude

A more familiar way of representing a wave is as a wavy line, as shown in Figure 14.5. We have already used this idea for sound waves (in Chapter 12) and we will do so again for electromagnetic waves (in Chapter 15). This wavy line is like a downward slice though the ripples in the ripple tank. It shows up the succession of **crests** and **troughs** of which the ripples are made.

The graph in Figure 14.5 shows a wave travelling from left to right. The horizontal axis (*x*-axis) shows the distance *x* travelled horizontally by the wave. The vertical axis (*y*-axis) shows how far (distance *y*) the surface of the water has been displaced from its normal level. Hence we can think of the *x*-axis as the level of the surface of the water when it is undisturbed. The line of the graph shows how far the surface of the water has been displaced from its undisturbed level.

From the representation of the wave in Figure 14.5, we can define two quantities for waves in general:

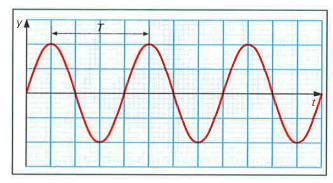
- The wavelength λ of a wave is the distance from one crest of the wave to the next (or from one trough to the next). Since the wavelength is a distance, it is measured in metres, m. Its symbol is λ, the Greek letter 'lambda'.
- ◆ The **amplitude** *A* of a wave is the maximum distance that the surface of the water is displaced

Figure 14.5 Representing a wave as a smoothly varying wavy line. This shape is known as a sine graph. If you have a graphics calculator, you can use it to display a graph of $y = \sin x$, which will look like this graph.

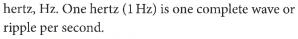
from its undisturbed level – in other words, the height of a crest. For ripples on the surface of water, the amplitude is a distance, measured in metres, m. Its symbol is A.

For ripples in a ripple tank, the wavelength might be a few millimetres and the amplitude a millimetre or two. Waves on the open sea are much bigger, with wavelengths of tens of metres, and amplitudes varying from a few centimetres up to several metres.

Study tip


Note that the amplitude is measured from the undisturbed level (the central horizontal line) up to the crest. It is *not* measured from trough to crest.

Frequency and period


As the bar in the ripple tank vibrates, it sends out ripples. Each up-and-down movement sends out a single ripple. The more times the bar vibrates each second, the more ripples it sends out. This is shown in the graph of Figure 14.6. Take care! This looks very similar to the previous wave graph in Figure 14.5, but here the horizontal axis shows time t, not distance x. This graph shows how the surface of the water at a particular point moves up and down as time passes.

From the representation of the wave in Figure 14.6, we can define two quantities for waves in general:

◆ The **frequency** *f* of a wave is the number of waves sent out each second. Frequency is measured in

Figure 14.6 A graph to show the period of a wave. Notice that this graph has time *t* on its horizontal axis.

◆ The period T of a wave is the time taken for one complete wave to pass a point. The period is measured in seconds, s.

We have already discussed the frequency and period of a sound wave in Chapter 12. It is important always to check whether a wave graph has time *t* or distance *x* on its horizontal axis.

The frequency of a wave is the number of waves sent out or passing a point per second. Its period is the number of seconds for each wave to pass a point. Hence frequency f and period T are obviously related to each other. Waves with a short period have a high frequency.

frequency (Hz) =
$$\frac{1}{\text{period (s)}}$$

$$f = \frac{1}{T}$$

$$\text{period (s)} = \frac{1}{\text{frequency (Hz)}}$$

$$T = \frac{1}{f}$$

Waves on the sea might have a period of 10 s. Their frequency is therefore about 0.1 Hz. A sound wave might have a frequency of 1000 Hz. Its period is therefore $\frac{1}{1000}$ s, which means that a wave arrives every 1 ms (one millisecond).

Wave speed

The **wave speed** is the rate at which the crest of a wave travels along. For example, it could be the speed of the crest of a ripple travelling over the surface of the water. Speed is measured in metres per second (m/s).

Waves can have very different speeds. Ripples in a ripple tank travel a few centimetres per second. Sound waves travel at 330 m/s through air. Light waves travel at about 300 000 000 m/s through air.

Waves and energy

We can also think of the speed of a wave as the speed at which it transfers energy from place to place.

Think of the Sun. It is a source of energy. Its energy reaches us in the form of radiation – light waves and infrared waves – which travel through the vacuum of space and which are absorbed by the Earth.

Think of a loudspeaker. It vibrates and causes the air nearby to vibrate. These vibrations spread out in the air as a sound wave. When they reach our ears, our eardrums vibrate. Energy has been transferred by the sound waves to our ears.

If you have ever been knocked over by a wave in the sea, you will know that water waves also carry energy. It is important to realise that, when a wave travels from one place to another, it is not matter that is moving. The wave is moving, and it is carrying energy. It may move through matter or even through a vacuum, but the matter itself is *not* transferred from place to place.

Study tip

Remember that a wave transfers energy without matter being transferred.

Transverse and longitudinal waves

Ripples in a ripple tank are one way of looking at the behaviour of waves. You can demonstrate waves in other ways. As shown in Figure 14.7a, a stretched 'slinky' spring can show waves. Fix one end of the spring and move the other end from side to side. You will see that a wave travels along the spring. (You may also notice it reflecting from the fixed end of the spring.) You can demonstrate the same sort of wave using a stretched rope or piece of elastic.

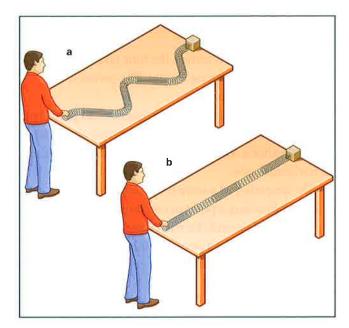
A second type of wave can also be demonstrated with a stretched 'slinky' spring. Instead of moving the free end from side to side, move it backwards and forwards (Figure 14.7b). A series of compressions travels along the spring, regions in which the segments of the spring are compressed together. In between are rarefactions, regions where the segments of the spring are further apart. This type of wave cannot be demonstrated on a stretched rope.

These demonstrations in Figure 14.7 show two different types of wave:

 transverse waves, in which the particles carrying the wave move from side to side, at right angles to the direction in which the wave is moving longitudinal waves, in which the particles carrying the wave move back and forth, along the direction in which the wave is moving.

A ripple on the surface of water is an example of a transverse wave. The particles of the water move up and down as the wave travels horizontally.

A sound wave is an example of a longitudinal wave. As a sound travels through air, the air molecules move back and forth as the wave travels. Compare Figure 14.7b with Figure 12.11 shown earlier to see the similarity. Table 14.1 lists examples of transverse and longitudinal waves.


Activity 14.1 Observing waves

Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- A03.2 Plan experiments and investigations
- AO3.3 Make and record observations, measurements and estimates
- AO3.4 Interpret and evaluate experimental observations and data

Carry out some experiments to observe transverse and longitudinal waves.

- 1 Stretch a long 'slinky' spring along a bench. Student A holds the 'free' end, and student B holds the 'fixed' end.
- 2 Student A moves the free end from side to side, as in Figure 14.7a. Watch the transverse waves travel along the spring and reflect from the fixed end. Try sending a single pulse along the spring.
- 3 Repeat with longitudinal pulses and waves, made by moving the free end backwards and forwards, along the direction of travel, as in Figure 14.7b.
- 4 Try to measure the speed of a pulse along the spring. Do transverse and longitudinal waves travel at the same speed?
- 5 Tie one end of a long elastic cord to a fixed point at one end of the lab. Stretch the cord and send waves along it. Can you measure their speed? Does their speed change if you make the cord tighter or slacker?

Figure 14.7 Waves along a stretched spring. **a** A transverse wave, made by moving the free end from side to side. **b** A longitudinal wave, made by pushing the free end back and forth, along the length of the spring.

Transverse waves	Longitudinal waves
ripples on water	sound
light and all other electromagnetic waves	

Table 14.1 Transverse and longitudinal waves.

Questions

- **14.1** Describe the motion of molecules of water as a ripple moves across the surface of water in a ripple tank.
- 14.2 The two graphs shown earlier in Figures 14.5 and 14.6 are very similar to each other. What is the important difference between them?
- **14.3** Draw a diagram to show what is meant by the amplitude of a wave.
- **14.4** How could you find the wavelength of the ripples shown in Figure 14.4?
- **14.5** If 10 waves occupy 15.0 cm, what is their wavelength?
- **14.6 a** If 100 sound waves reach your ear each second, what is their frequency?
 - **b** What is their period?
- **14.7** Are sound waves transverse or longitudinal?

14.2 Speed, frequency and wavelength

How fast do waves travel across the surface of the sea? If you stand on the end of a pier, you may be able to answer this question. Suppose that the pier is 60 m long, and that you notice that exactly five waves fit into this length (Figure 14.8). From this information, you can deduce that their wavelength is:

wavelength =
$$\frac{60 \text{ m}}{5}$$
 = 12 m

Now you time the waves arriving. The interval between crests as they pass the end of the pier is $4.0 \, s$. How fast are the waves moving? One wavelength ($12 \, m$) passes in $4.0 \, s$. So the speed of the waves is:

speed =
$$\frac{12 \text{ m}}{4.0 \text{ s}}$$
 = 3.0 m/s

In section 14.1 we met the various quantities for a wave: wavelength, amplitude, frequency, period and speed. Definitions for frequency and wavelength are as shown.

Key definitions

frequency – the number of waves per second passing a point.

wavelength – the distance between adjacent crests (or troughs) of a wave.

The speed v, frequency f and wavelength λ of a wave are connected. We can write the connection in the form of an equation:

speed (m/s) = frequency (Hz) × wavelength (m)

$$v = f\lambda$$

Another way to think of this is to say that the speed is the number of waves passing per second times the length of each wave. If 100 waves pass each second ($f = 100 \, \text{Hz}$), and each is 4.0 m long ($\lambda = 4.0 \, \text{m}$), then 400 m of waves pass each second. The speed of the waves is 400 m/s.

Figure 14.8 By timing waves and measuring their wavelength, you can find the speed of waves.

Study tip

Remember that 1 Hz = 1 wave per second.

Worked example 14.1

An FM radio station broadcasts signals of wavelength 3.0 m and frequency 100 MHz. What is their speed?

Step 1: Write down what you know, and what you want to know.

$$f$$
 = 100 MHz = 100 000 000 Hz = 108 Hz λ = 3.0 m

$$\nu = ?$$

Step 2: Write down the equation for wave speed. Substitute values and calculate the answer.

$$v = f\lambda$$

$$v = 10^8 \text{ Hz} \times 3.0 \text{ m}$$

$$= 3 \times 10^8 \text{ m/s}$$

So the radio waves travel through the air at 3.0×10^8 m/s.

You should recognise that the value of 3.0×10^8 m/s found in Worked example 14.1 is the **speed of light**, the speed at which all electromagnetic waves travel through empty space (vacuum).

Worked example 14.2

A pianist plays the note middle C, whose frequency is 264 Hz. What is the wavelength of the sound waves produced? (Speed of sound in air = 330 m/s.)

Step 1: Write down what you know, and what you want to know.

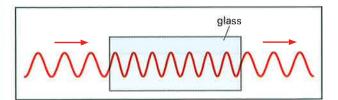
$$f = 264 \,\mathrm{Hz}$$

 $v = 330 \,\mathrm{m/s}$
 $\lambda = ?$

Step 2: Write down the equation for wave speed. Rearrange it to make wavelength λ the subject.

$$v = f\lambda$$

$$\lambda = \frac{v}{f}$$


Step 3: Substitute values and calculate the answer.

$$\lambda = \frac{330 \, \text{m/s}}{264 \, \text{Hz}} = 1.25 \, \text{m}$$

So the wavelength of the note middle C in air is 1.25 m.

Changing material, changing speed

When waves travel from one material into another, they usually change speed. Light travels more slowly in glass than in air. Sound travels faster in steel than in air. When this happens, the frequency of the waves remains unchanged. As a consequence, their wavelength must change. This is illustrated in Figure 14.9, which shows light waves travelling quickly through air. They reach some glass and slow down, and their wavelength decreases. When they leave the glass again, they speed up, and their wavelength increases again.

Figure 14.9 Waves change their wavelength when their speed changes. Their frequency remains constant. Here, light waves slow down when they enter glass and speed up when they return to the air.

Questions

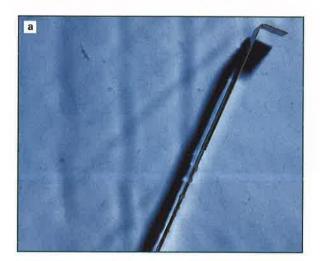
- **14.8** Write down an equation relating speed, frequency and wavelength of a wave. Indicate the SI units of each quantity.
- **14.9** If 10 waves pass a point each second and their wavelength is 30 m, what is their speed?
- **14.10** All sound waves travel with the same speed in air. Which has the higher frequency, a sound wave of wavelength 2.0 m or one with wavelength 1.0 m?
- **14.11** Which have the longer wavelength, radio waves of frequency 90 MHz or 100 MHz?
- **14.12** Light slows down when it enters water from air.
 - a What happens to its speed?
 - **b** What happens to its wavelength?
 - c What happens to its frequency?

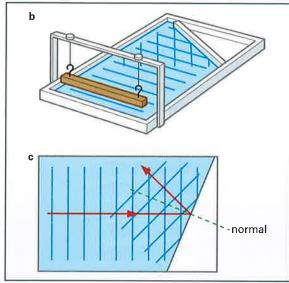
14.3 Explaining wave phenomena

If we look at ripples on the surface of water in a ripple tank, we can begin to see why physicists say that light behaves as if it were a form of wave. The ripples are much more regular and uniform than waves on the sea, so they are a good *model system* to look at.

Reflection of ripples

Figure 14.10 shows what happens when a flat metal barrier is placed in the ripple tank. The photograph in Figure 14.10a shows the pattern of the ripples observed, and Figure 14.10b shows how the ripples are produced. Straight ripples ('plane waves') are reflected when they strike the flat surface of the barrier. The metal barrier acts like a mirror, and the ripples bounce off it. This shows an important thing about how waves behave. They pass through each other when they overlap.

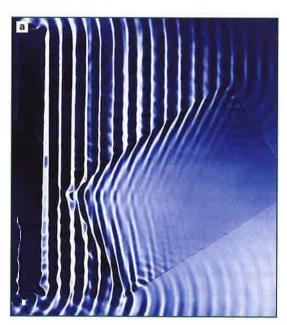

In Figure 14.10c, you can see the same pattern, this time as a drawing. This is an 'aerial view' of the ripples. The blue lines represent the tops of the ripples. These lines are known as **wavefronts**. The separation of the wavefronts is equal to the wavelength of the ripples. Figure 14.10c also shows lines (the red arrows) to indicate how the direction of travel of the ripples changes. This diagram should remind you of the ray diagram for the law of reflection of light (Figure 13.5 shown earlier).


The ripples are reflected by the metal barrier so that the angle of incidence equals the angle of reflection.

Refraction of ripples

Refraction occurs when the speed of light changes. We can see the same effect for ripples in a ripple tank (Figure 14.11). A glass plate is immersed in the water, to make the water shallower in that part of the tank. There, the ripples move more slowly because they drag on the bottom of the tank (which is now actually the upper surface of the submerged glass plate).

In the photograph in Figure 14.11a, you can see that these ripples lag behind the faster-moving ripples in



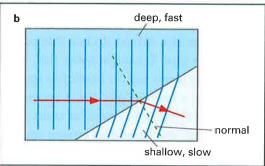


Figure 14.10 The reflection of plane waves by a flat metal barrier in a ripple tank. **a** This criss-cross pattern is observed as the reflected ripples pass through the incoming ripples. **b** How the ripples are produced. **c** The arrows show how the direction of the ripples changes when they are reflected. The angle of incidence is equal to the angle of reflection, just as in the law of reflection of light.

the deeper water. Their direction of travel has changed. Figure 14.11b shows the same effect, but as a wavefront diagram. On the left, the ripples are in deeper water and moving faster. They advance steadily forwards. On the right, the ripples are moving more slowly. The right-hand end of a ripple is the first part to enter the shallower water, so it has spent longest moving at a slow speed. Hence the right-hand end of each ripple lags furthest behind.

The rays (the red arrows) marked on Figure 14.11b show the direction in which the ripples are moving. They are always at right angles to the ripples. They emphasise how the ripples turn so their direction is closer to the normal as they slow down, just as we saw with the refraction of light (look at Figure 13.10 shown earlier).

Figure 14.11 The refraction of plane waves by a flat glass plate in a ripple tank. **a** A submerged glass plate makes the water shallower on the right. In this region, the ripples move more slowly, so that they lag behind the ripples in the deeper water. **b** This wavefront diagram shows the same pattern of ripples. The rays show that the refracted ray is closer to the normal, just as when light slows down on entering glass.

Activity 14.2 Ripple tank

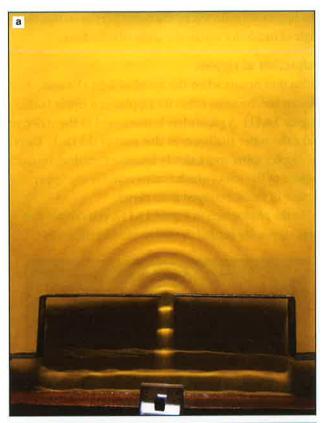
Observe reflection and refraction of ripples in a ripple tank.

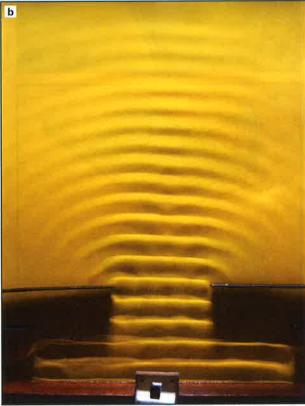
Questions

- **14.13** Draw a diagram to show what happens to plane waves when they strike a flat reflector placed at 45° to their direction of travel.
- **14.14** How can the speed of ripples in a ripple tank be changed?

Explaining reflection and refraction

We can see an interesting phenomenon when we look at how ripples behave when they go through a gap in a barrier. Figure 14.12 shows what happens. As ripples pass through a gap in a barrier, they spread out into the space beyond the barrier. This is an example of a phenomenon called **diffraction**.


You might notice diffraction of water waves in a harbour. The waves enter the harbour mouth and spread around corners, so that no part of the harbour is entirely undisturbed. Boats bob up and down on the diffracted waves.


Sound waves are readily diffracted as they pass through doorways and open windows. We rely on the diffraction of sound every day to hear what is going on in the next room. This supports the idea that sound travels as a wave.

Light waves are also diffracted when they pass through very tiny gaps. You might notice that, on a foggy night, street lamps and car headlights appear to be surrounded by a 'halo' of light. This is because their light is diffracted by the tiny droplets of water in the air. The same effect can also sometimes be seen around the sun during the day (see Figure 14.13).

Question

14.15 What is observed when ripples pass through a gap in a barrier?

Figure 14.12 Ripples are diffracted as they pass through a gap in a barrier – they spread into the space behind the barrier. The effect is greater in **a** than in **b** because the gap is narrower in **a**.

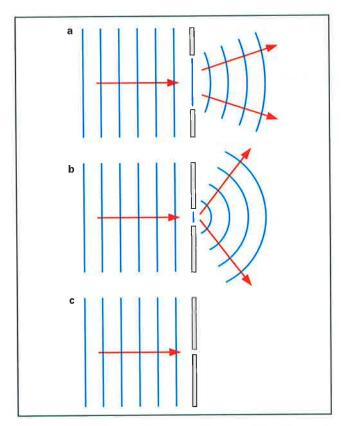
Figure 14.13 Light from the Sun is diffracted as it passes through foggy air (which is full of tiny droplets of water), producing a halo of light.

Diffraction, more or less

Waves are diffracted when they pass through a gap or around the edge of an obstacle. The effect is biggest when the width of the gap is equal to the wavelength of the ripples (see Figure 14.14).

Sound waves have wavelengths between about 10 mm and 10 m. This is why they are diffracted as they pass through doorways and windows. Light waves have a much shorter wavelength – less than a millionth of a metre. This is why very small gaps are needed to see light being diffracted.

We can explain diffraction as follows. As the ripples arrive at the gap in the barrier, the water at the edge of the gap moves up and down. This sets off new circular ripples, which spread out behind the barrier.


If you look at the diffracted ripples in Figure 14.14b, you will see that the central part of the ripple remains straight after it has passed through the gap. At the edges, the ripples have the shape of an arc of a circle.

Study tip

Remember that waves are diffracted most when the width of the gap is similar to the wavelength of the waves.

Questions =

14.16 What can you say about the width of a gap if it is to produce the greatest diffraction effect?

Figure 14.14 Diffraction is greatest when the width of the gap is equal to the wavelength of the waves being diffracted. When the gap is much smaller than the wavelength, the waves do not pass through at all.

If you look at the diffracted ripples in Figure 14.12b, you will see that the central part of the ripple remains straight after it has passed through the gap. At the edges, the ripples have the shape of an arc of a circle.

Study tip

Remember that waves are diffracted most when the width of the gap is equal to the wavelength of the waves.

Question

14.17 Draw a diagram to show how a series of parallel, straight wavefronts are altered as they pass through a gap whose width is equal to the wavelength of the waves.

Summary

You should know:

- that waves transfer energy
- about waves on water
- that waves can be transverse or longitudinal
- 5 ◆ the relationship between wave speed, frequency and wavelength
 - about reflection and refraction of waves
 - about diffraction of waves
- \$\rightarrow\$ that the wave model is used to explain reflection, refraction and diffraction.

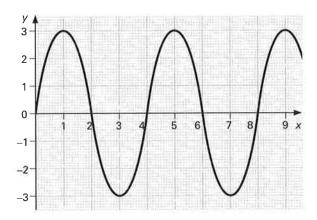
End-of-chapter questions

- 1 Copy and complete the following sentence, putting suitable words in the gaps.

 A wave transfers from place to place without transferring
- 2 Copy the table and complete it by writing *transverse* and *longitudinal* in the correct boxes in the first column.

describes a wave that varies from side to side, at right angles to the direction of travel
describes a wave that varies back and forth along the direction of travel

3 The equation $v = f\lambda$ is used to calculate the speed of a wave. Copy the table and complete it to show what each symbol represents and what their units are.

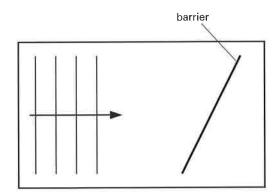

Symbol	Quantity	Unit
ν		
f		
λ		

- a A wave reflects when it passes through / bounces off the boundary between two materials.
- **b** A wave refracts when its *energy* / *speed* changes.

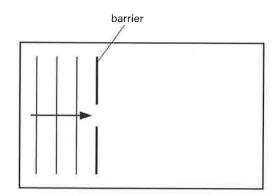
- Copy and complete the sentence by adding **three** properties of waves at the start., and are all properties of waves that can be explained using the wave model.
- 6 Look at the wave shown. The horizontal and vertical scales are in cm.

a What is its wavelength?

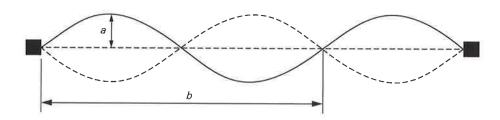
[1]


b What is its amplitude?

[1]

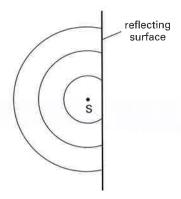

c If this wave is moving at a speed of 10 cm/s, what is its frequency?

- [3]
- **d** On graph paper, with the same labelled and numbered axes as here, sketch a wave having *half* this amplitude and *twice* this wavelength.
- [2]
- 7 Copy and complete the diagram to show how plane waves are reflected by a straight barrier placed at an angle to their direction of travel.



- 8 When light passes from air into glass, do the following quantities increase, decrease, or stay the same?
 - a speed [1]
 - b frequency [1]
 - c wavelength [1]
- 9 a Give an equation that relates the speed, frequency and wavelength of a wave. [1]
 - **b** Light waves of frequency 6.0×10^{14} Hz have a wavelength of 3.75×10^{-7} m in water. What is their speed in water?
- 10 Copy and complete the diagram to show how plane waves are diffracted as they pass through a narrow gap. [2]

11 A stretched string is vibrating between two fixed ends. The diagram shows how the string is vibrating.



- a State the name of:
 - i distance a [1]
 - ii distance b. [1]
- **b** The string is causing a sound to be transmitted through the air.
 - i Describe how the string causes the sound. [2]
 - ii State what happens to the sound as the distance *a* decreases. [1]

[Cambridge IGCSE® Physics 0625/22, Question 8, October/November, 2010]

[2]

12 a A small object S is dipped repeatedly into water near a flat reflecting surface. The first diagram gives an instantaneous view from above of the position of part of the waves produced.

Copy the diagram and on your drawing:

P •

- i put a clear dot at the point from which the reflected waves appear to come (label the dot R)
- ii draw the reflected portion of each of the three waves shown.

[3]

b The second diagram shows a small object P in front of a plane mirror M.

Copy the diagram and carefully draw two rays that show how the mirror forms the image of object P. Label the image I.

[3]

[Cambridge IGCSE® Physics 0625/33, Question 10, October/November, 2010]

15 Spectra

In this chapter, you will find out:

- how to describe the dispersion of light by a prism
- how to describe the main features of the electromagnetic spectrum
- that all electromagnetic waves travel at the same speed in vacuum
- the value of the speed of electromagnetic waves.

Light and colour

Diamonds are attractive because they sparkle. As you turn a cut diamond, light flashes from its different internal surfaces. This is the result of total internal reflection of light within the diamond. You may also notice that you can see all sorts of colours in the diamond, even though the diamond itself is likely to be colourless. Where do these varying colours come from?

Cut glass is a lot cheaper than diamonds, and has many more uses. It is used for chandeliers, which move gently in the air. It is also used for glass ornaments and pendants (Figure 15.1). Your eye is caught by the changing colours of the rainbow as you walk past an ornament, or as a pendant moves. Again, the glass itself is colourless, so where do these colours come from?

If you are standing in the right place, you may see a rainbow when sunlight passes through raindrops. Traditionally, we say that there are seven colours in the rainbow. The number seven was chosen because it had a mystical significance in the 17th century. The standard list is: red, orange, yellow, green, blue, indigo, violet. There are different ways of remembering this. One simple way is to remember the sequence of initial letters in the form of a name: Roy G Biv.

It is very hard to distinguish between indigo and violet at the end of the rainbow, so you might say that there are really only six colours. Alternatively, you might suggest that there are many shades of red present, and of each of the other colours, so the rainbow shows many more than seven colours.

Figure 15.1 A cut glass pendant.

15.1 Dispersion of light

The underlying principle for the formation of these colours is shown in Figure 15.2. When white light passes through glass (here a prism), it refracts as it enters and leaves the glass, and is split into a **spectrum** of colours. You should notice that the colours merge into one another, and they are not all of equal widths in the spectrum. A rainbow is just a naturally occurring spectrum. White light from the Sun is split up into a spectrum of colours as it enters and leaves droplets of water in the air. It is also reflected back to the viewer by total internal reflection, which is why you must have the Sun behind you to observe a rainbow.

This splitting up of white light into a spectrum is known as **dispersion** ('spreading out'). Isaac

Newton set out to explain how it happens. It had been suggested that light is coloured by passing it through a prism. Newton showed that this was the wrong idea, by arranging for the spectrum to be passed back through another prism. The colours recombined to form white light again. He concluded that white light is a mixture of all the different colours of the spectrum.

So what happens in a prism to produce a spectrum? As the white light enters the prism, it slows down. We say that it is refracted and, as we have seen, its direction changes. Dispersion occurs because each colour is refracted by a different amount (Figure 15.3). Violet light slows down the most, and so it is refracted the most. Red light is least affected.

Activity 15.1 Making spectra

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.2 Plan experiments and investigations

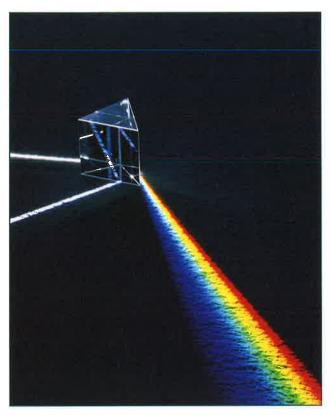
AO3.3 Make and record observations, measurements and estimates

A03.4 Interpret and evaluate experimental observations and data

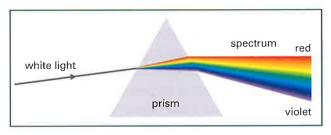
Safety

When using a laser, wear safety goggles. Avoid allowing the beam or any reflected beam to enter your eyes.

Make a spectrum of white light in two ways: by passing it through a prism and then by using a diffraction grating.


Note: This experiment works best if you use a white light source whose beam passes through a tall, narrow slit.

1 Set up a source of white light, for example a ray box with a slit, to produce a narrow ray of


- light. Make the ray shine across a sheet of white paper.
- 2 Place a prism in the path of the ray so that the ray strikes the midpoint of one face of the prism.
- 3 Adjust the angle of the prism until you observe a spectrum emerging from the opposite face. Position a screen so that the spectrum is clearly visible. (Figure 15.3 should give you an idea of how to arrange the beam and the prism. Observing a spectrum like this is not very easy. You will need to adjust the position and angle of the prism carefully to see a clear spectrum.)
- 4 Place a coloured filter in the path of the ray from the light source. Which colours appear in the spectrum? Does it matter whether the filter is placed before or after the prism? Try filters of different colours.
- 5 It is usually easier to obtain a spectrum using a diffraction grating. Shine the ray of light directly at a grating so that it strikes the grating at 90°. Where does the spectrum appear?
- **6** If you have access to a laser, use it in place of the white light source. What can you say about the spectrum of its light?

Questions

- **15.1** What colours are next to green in the spectrum?
- **15.2** Draw a diagram to show how white light can be dispersed into a spectrum using a glass prism.
- **15.3** Why are some colours of light more strongly refracted than others when they enter glass?

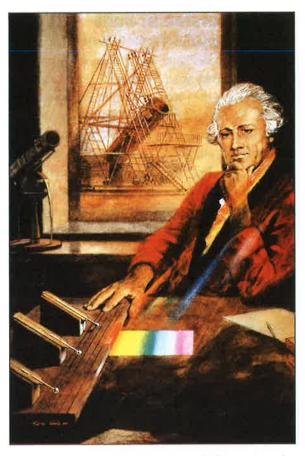

Figure 15.2 A spectrum can be produced by shining a ray of white light through a glass prism. The light is split up into a spectrum.

Figure 15.3 Violet light is dispersed more than red light as it passes through a prism.

15.2 The electromagnetic spectrum

In 1799, William Herschel was examining the spectrum of light from the Sun. He was an astronomer, German by birth but working at Slough, near London. He knew that the Sun was a star and wondered what he might find out about the Sun by looking at its spectrum. He shone the Sun's light through a prism to produce a spectrum, then placed a thermometer at different points in the spectrum, as shown in Figure 15.4. The reading on the thermometer rose, because objects get warm when they absorb light. Herschel noticed an interesting effect – the thermometer reading grew higher as he

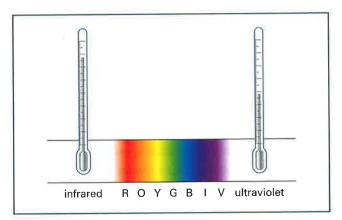


Figure 15.4 William Herschel, together with the apparatus he used to discover infrared radiation.

moved towards the red end of the spectrum. What would happen if he moved just beyond the end? To his surprise, he found that the reading was higher still (Figure 15.5). There was nothing to be seen beyond the red, but there was definitely something there. A little further, and the mercury in the thermometer rose higher still. Further still, and it started to fall.

Herschel had discovered an invisible form of radiation, which he called **infrared radiation** ('infra' means 'below' or 'lower down'). You can experience infrared radiation for yourself, using a kettle that has recently boiled. With great care, hold the back of your hand near to the kettle. You feel the warmth of the kettle as it is absorbed by your skin. The kettle is emitting infrared radiation. (We sometimes call this 'heat radiation' – see Chapter 11 – but 'infrared radiation' is a better term.)

It is not surprising to learn that we receive heat from the Sun. However, what is surprising is that this radiation behaves in such a similar way to light. It is as if it is just an extension of the spectrum of visible light.

Figure 15.5 The spectrum of light from the Sun extends beyond the visible region, from infrared to ultraviolet.

Beyond the violet

The discovery of radiation beyond the red end of the spectrum encouraged people to look beyond the violet end. In 1801, a German scientist called Johan Ritter used silver chloride to look for 'invisible rays'. Silver salts are blackened by exposure to sunlight (this is the basis of photography), so he directed a spectrum of sunlight onto paper soaked in silver chloride solution. The paper became blackened and, to his surprise, the effect was strongest beyond the violet end of the visible spectrum. He had discovered another extension of the spectrum, which came to be called **ultraviolet radiation** ('ultra' means 'beyond'). Although our eyes cannot detect ultraviolet radiation, sensitive photographic film can.

Both infrared and ultraviolet radiations were discovered by looking at the spectrum of light from the Sun. However, they do not have to be produced by an object like the Sun. Imagine a lump of iron that you heat in a Bunsen flame. At first, it looks dull and black. Take it from the flame and you will find that it is emitting infrared radiation. Put it back in the flame and heat it more. It begins to glow, first a dull red colour, then more yellow, and eventually white hot. It is emitting visible light. When its temperature reaches about 1000 °C, it will also be emitting appreciable amounts of ultraviolet radiation.

This experiment should suggest to you that there is a connection between infrared, visible and ultraviolet radiations. A cool object emits only radiation at the cool end of the spectrum. The hotter the object, the more radiation it emits from the hotter end.

The Sun is a very hot object (Figure 15.6). Its surface temperature is about 7000 °C, so it emits a lot

Figure 15.6 The Sun is examined by several satellite observatories. This image was produced by the *SOHO* satellite using a camera that detects the ultraviolet radiation given off by the Sun. You can see some detail of the Sun's surface, including giant prominences looping out into space. The different colours indicate variations in the temperature across the Sun's surface.

of ultraviolet radiation. Most of this is absorbed in the atmosphere, particularly by the ozone layer. A small amount of ultraviolet radiation does get through to us. The thinning of the ozone layer by chemicals released by human activity means that this amount is increasing. This increased exposure is disturbing because it increases the risk of skin cancer.

Electromagnetic waves

In section 15.1, we saw that a spectrum is formed when light passes through a prism because some colours are refracted more than others. The violet end of the spectrum is refracted most. Now we can deduce that ultraviolet radiation is refracted even more than violet light, and that infrared radiation is refracted less than red light.

To explain the spectrum, and other features of light, physicists developed the *wave model* of light. Just as sound can be thought of as vibrations or waves travelling through the air (or any other material), so we can think of light as being another form of wave. Sounds can have different pitches – the higher the frequency, the higher the pitch. We can think of a piano keyboard as being a 'spectrum' of sounds of different

frequencies. Light can have different colours, according to its frequency. Red light has a lower frequency than violet light. Visible light occurs as a spectrum of colours, depending on its frequency.

A Scottish physicist, James Clerk Maxwell, eventually showed in 1860 that light was in fact small oscillations in electric and magnetic fields, or electromagnetic waves. His theory allowed him to predict that they could have any value of frequency. In other words, beyond the infrared and ultraviolet regions of the spectrum, there must be even more types of electromagnetic wave (or electromagnetic radiation). By the early years of the 20th century, physicists had discovered or artificially produced several other types of electromagnetic wave (see Table 15.1), to complete the electromagnetic spectrum. Maxwell also predicted that all electromagnetic waves travel at the same speed through empty space, the speed of light (almost 300 000 000 m/s).

The speed of electromagnetic waves

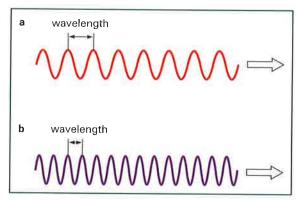
All types of electromagnetic wave have one thing in common: they travel at the same speed in a vacuum. They travel at the speed of light, whose value is close to $300\,000\,000\,\text{m/s}$ ($3\times10^8\,\text{m/s}$). Like light, the speed of electromagnetic waves depends on the material through which they are travelling. They travel fastest through a vacuum.

Study tip

Remember that the speed of light is 3×10^8 m/s in a vacuum (empty space). Light and other types of electromagnetic radiation travel more slowly in other materials.

Type of electromagnetic wave	Discoverer	Date
infrared	William Herschel	1799
ultraviolet	Johan Wilhelm Ritter	1801
radio waves	Heinrich Hertz	1887
X-rays	Wilhelm Röntgen	1895
gamma (γ) rays	Henri Becquerel	1896

 Table 15.1
 Discoverers of electromagnetic waves.


Wavelength and frequency

We can represent light as a wave, just as we represented the small changes in air pressure as a sound wave (see Figure 12.11 shown earlier). Figure 15.7 compares red light with violet light. Red light has a greater wavelength than violet light – that is, there is a greater distance from one wave crest to the next. This is because both red light and violet light travel at the same speed (as predicted by Maxwell), but violet light has a greater frequency, so it goes up and down more often in the same length.

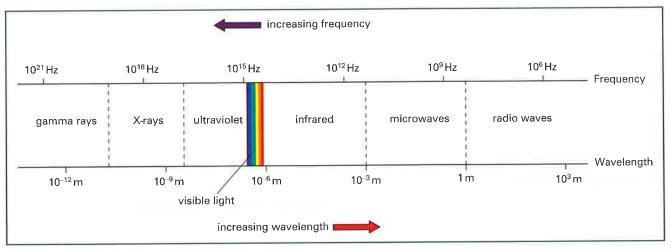

The waves that make up visible light have very high frequencies – over one hundred million million hertz, or 10^{14} Hz. Their wavelengths are very small, from $400\,\mathrm{nm}$ for violet light to $700\,\mathrm{nm}$ for red light. (One nanometre (1 nm) is one-billionth (one-thousand-millionth, $\frac{1}{1000000000}$ th) of a metre, so $400\,\mathrm{nm} = 400 \times 10^{-9}\,\mathrm{m}$.) So more than one million waves of visible light fit into a metre.

Figure 15.8 shows the complete electromagnetic spectrum, with the wavelengths and frequencies of each region. In fact, we cannot be very precise about where each region starts and stops. Even the ends of the visible light section are uncertain, because different people can see slightly different ranges of wavelengths, just as they can hear different ranges of sound frequencies.

Laser light is not dispersed by a prism. It is refracted so that it changes direction, but it is not split up into a spectrum. This is because it is light of a single colour, and is described as **monochromatic** ('mono' = one, 'chromatic' = coloured). Monochromatic light is light of a single frequency.

Figure 15.7 Comparing red and violet light waves. Both travel at the same speed, but red light has a longer wavelength because its frequency is less. The wavelength is the distance from one crest to the next (or from one trough to the next). Think of red light waves as long, lazy waves; violet light is made up of shorter, more rapidly vibrating waves.

Figure 15.8 The electromagnetic spectrum. The scale of frequencies increases along one side. The scale of wavelengths increases in the opposite direction.

Questions

- **15.4 a** Which has the longer wavelength, red light or violet light?
 - **b** Which has the greater frequency?
- **15.5 a** Which has the longer wavelength, red light or infrared radiation?
 - **b** Which has the greater frequency?
- **15.6** Look at the spectrum shown in Figure 15.8.
 - **a** Which waves have the shortest wavelength?
 - **b** Which have the lowest frequency?
- **15.7 a** Which travels faster in empty space, violet light or red light?
 - **b** Which travels faster in glass?

are also used to transmit mobile phone (cellphone) signals between masts, which may be up to 20 km apart.

Infrared radiation is used in remote controls for devices such as televisions and video recorders. A beam of radiation from the remote control carries a coded signal to the appliance, which then changes channel, starts to record, or whatever. You may be able to use a digital camera to observe this radiation, which would otherwise be invisible to our eyes. Grills and toasters also use infrared radiation, because it is thermal (heat) energy 'on the move'. Security alarms send out beams of infrared and detect changes in the reflected radiation – these may indicate the presence of an intruder.

X-rays can penetrate solid materials and so they are used in security scanners at airports (see Figure 15.9).

Uses of electromagnetic waves

Since the different regions of the electromagnetic spectrum were discovered, we have found many ways to make use of these waves. Here are some important examples.

Radio waves are used to broadcast radio and television signals. These are sent out from a transmitter a few kilometres away, to be captured by an aerial on the roof of a house.

Microwaves are used in satellite television broadcasting, because microwaves pass easily through the Earth's atmosphere as they travel up to a broadcasting satellite, thousands of kilometres away in space. Then they are sent back down to subscribers on Earth. Microwaves

Figure 15.9 Two uses of electromagnetic radiation at the airport security check: X-rays are used to see inside the passengers' hand baggage, while radio waves detect metal objects as passengers walk through the arch.

They are also used in hospitals and clinics to see inside patients without having to perform surgery. The X-rays are detected using electronic detectors (similar to the ones used in digital cameras). Bone absorbs X-rays more strongly than flesh, so bones appear as a shadow in the image. Similarly, a metal gun will appear as a shadow because it absorbs X-rays more strongly than the clothes it is hidden among.

Electromagnetic hazards

All types of radiation can be hazardous – even bright light shone into your eyes can blind you. So people who work with electromagnetic radiation must be careful and take appropriate precautions.

Microwaves are used to cook food in microwave ovens. This shows that they have a heating effect when absorbed. Telephone engineers, for example, must take care not to expose themselves to microwaves when they are working on the masts of a mobile phone (cellphone) network. Domestic microwave ovens must be checked to ensure that no radiation is leaking out.

People who work with X-rays must minimise their exposure. They can do this by standing well away when a patient is being examined, or by enclosing the equipment in a metal case, which will absorb X-rays.

Questions

- **15.8** Name two types of electromagnetic radiation that can be used for cooking food.
- 15.9 Explain how radio waves, microwaves and infrared radiation might all play a part when you watch a television show.

Summary

You should know:

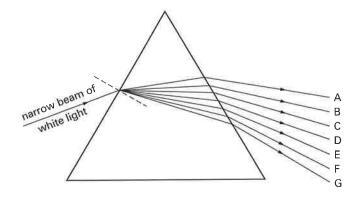
- how white light is dispersed by a prism
- the sections of the electromagnetic spectrum
- about electromagnetic waves
- about uses and hazards of electromagnetic radiation
- S ◆ the speed of light
- \$\rightarrow\$ the nature of laser light.

End-of-chapter questions

- 1 The spectrum of white light consists of seven colours, from red to violet.
 - a List the colours in order, one below another.
 - **b** Add the following labels to your list: *highest frequency, lowest frequency, longest wavelength* and *shortest wavelength*.
- 2 The electromagnetic spectrum is a 'family' of waves that includes visible light.
 - **a** Put the following regions of the electromagnetic spectrum in order, one below another, starting with the waves that have the greatest wavelength.
 - visible light infrared radio waves gamma rays ultraviolet microwaves X-rays
 - **b** Add the following labels to your list: *highest frequency, lowest frequency, longest wavelength* and *shortest wavelength*.

All electromagnetic waves travel at the same speed in empty space. Copy and complete the word equation below, giving the value of this speed.

Speed of electromagnetic waves in empty space = m/s


Copy and complete the following sentence, putting suitable words in the gaps.

The light from a laser is described as because it is light of a single

A glass prism can be used to show the dispersion of white light to form a spectrum.

a Draw a diagram to show how a ray of white light is dispersed as it passes through a prism.	[2]
--	-----

- b Which colour of light is most strongly dispersed (deflected) as it passes through the prism? [1]
- Explain why some colours of light are more strongly dispersed than others. [2]
- For each of the following statements, decide whether it is true or false.
 - [1] a Visible light lies between infrared and microwaves in the electromagnetic spectrum.
 - [1] **b** Infrared waves have longer wavelengths than red light.
 - All electromagnetic waves travel at the same speed in empty space (in vacuum). [1]
- [1] At what speed do electromagnetic waves travel through a vacuum?
- Explain why white light is dispersed to form a spectrum when it passes through a glass prism but [3] laser light is not.
- A narrow beam of white light enters a glass prism and is split into the colours of the visible spectrum, as shown (not to scale).

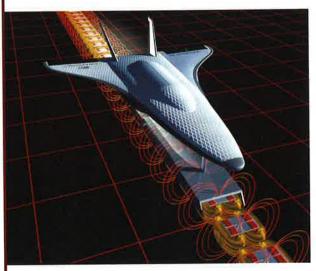
- What name do we give to:
 - the bending of the light as it enters the prism
 - the different amounts of bending that give rise to the spectrum?
 - [2]
- The lines (labelled A to G) leaving the prism represent rays of the seven main colours of the visible spectrum. Write down the letter that corresponds to:
 - the 'red' ray
 - [2] the 'yellow' ray.
- The visible spectrum is part of the electromagnetic spectrum. State two other types of radiation that are also part of the electromagnetic spectrum.

[Cambridge IGCSE® Physics 0625/22, Question 7, October/November, 2010]

[2]

10	A	sportsman is feared to have broken a leg, and is taken to hospital to have his leg X-rayed.	
		Copy and complete the following sentence about X-rays.	
		X-rays are a form of radiation that have very wavelengths.	[2
		In the hospital, what is used to detect the X-rays and produce an image of the bones of the leg?	[]
		Describe the properties of X-rays that enable an image to be produced, which distinguishes	-
		between bones and flesh.	[2
	d	State one precaution taken by the technicians who operate the X-ray machines	[1

[Cambridge IGCSE® Physics 0625/22, Question 10, May/June, 2011]


Block 4

Electricity and magnetism

At present, spacecraft are launched in to space using rockets. These use burning fuel as their energy source to blast upwards against the force of gravity. However, things may be different in future. The picture shows a different way of launching a spacecraft, using a magnetic levitation (mag-lev) system. The idea is that a spacecraft will travel along a horizontal track, rather like an airport runway. The track will be made of electromagnets, which will do two things: they will support the spacecraft so that it will 'float' just above the track, and they will accelerate the spacecraft forwards.

Once it reaches a speed of 1000 km/h, it will leave the ground and a rocket will provide the final push needed to send it in to orbit. A track like this could be used for several launches each day.

The red loops in the picture show the magnetic field produced by the electromagnet coils (gold coloured). Of course, we cannot see a magnetic field like this, but we draw field lines to help us to show what is going on. In this block, you will study electricity and magnetism and learn some of the ways in which physicists picture 'invisible' processes such as magnetic and electric fields, electric current and so on.

A computer-aided design for a mag-lev spacecraft launching system, being developed by engineers at NASA (USA) and the University of Sussex (UK).

16 Magnetism

In this chapter, you will find out:

- about permanent magnets and magnetic materials
- how to magnetise a magnetic material
- how to demagnetise a magnetic material
 - how to explain magnetic forces in terms of magnetic fields
 - how electromagnets are made and used.

Setting a course

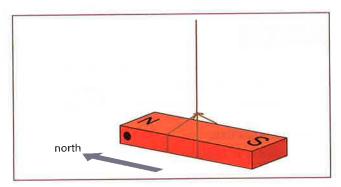
When Christopher Columbus set sail in 1492, he was hoping to find a new route to the East Indies by sailing west. To plot his course, he used a compass. He believed that the needle of a compass always points due north, and so it was easy to sail due west. In fact, he was wrong. A compass needle points towards the magnetic pole, and this is some distance away from the North Pole. This meant that Columbus's course across the Atlantic Ocean took him further south than he had intended to go. This had a happy consequence.

Columbus had been sailing for several weeks without sighting land. His crew were getting restless and stores were running low. He was on the point of turning back when the lookout sighted land. They had reached one of the Caribbean islands of the Bahamas (Figure 16.1). It turns out that, if Columbus had realised that his compass pointed a few degrees away from north, he would have travelled further to the north. He would have turned back before he ever reached land.

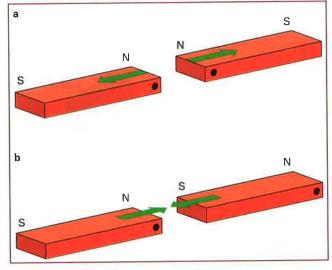
Compasses were vital instruments in the expansion of European nations as they looked for new places to trade with and conquer in the 15th and 16th centuries. With a compass and a reliable chart,

Figure 16.1 This map, published in 1506, shows the lands explored by Columbus. The Bahamas, where he first landed, are at the top, above the two large islands of Cuba and Hispaniola. On the right is a 'compass rose' used for navigation.

you could set a steady course for your target port and have a good chance of reaching it. A compass was made by rubbing an iron needle on a piece of naturally magnetised material called lodestone. If you carried your lodestone with you, you could always make a new compass. Historians have discovered that Europeans learned about magnets from the Chinese, who had been using compasses for over 1500 years before they reached Europe.


16.1 Permanent magnets

A compass needle is like a *bar magnet*. When it is free to rotate (Figure 16.2), it turns to point north–south. One end points north – this is the magnet's *north pole*, pointing roughly in the direction of the Earth's geographical North Pole. The other end is the magnet's *south pole*. (Sometimes, the north and south poles of a magnet are called the 'north-seeking' and 'south-seeking' poles, respectively.)


When two magnets are brought close together, there is a force between them. The north pole of one will attract the south pole of the other. Two north poles will repel each other, and two south poles will repel each other (Figure 16.3). This is summarised as follows:

- like poles repel
- unlike poles attract.

('Like poles' means poles that are the same – both north, or both south. 'Unlike poles' means opposite

Figure 16.2 A freely suspended magnet turns so that it points north–south.

Figure 16.3 a Two like magnetic poles repel one another. **b** Two unlike magnetic poles attract each other.

poles – one north and the other south. People often remember this rule more simply as 'opposites attract'.)

Since the north pole of the compass needle is attracted to the Earth's North Pole, it follows that there must be a magnetic south pole up there, under the Arctic ice! It is easy to get confused about this. In fact, for a long time, mediaeval scientists thought that compass needles were attracted to the Pole Star. Eventually, an English instrument-maker called Robert Norman noticed that, if he balanced a compass needle very carefully at its midpoint, it tilted downwards slightly, pointing into the Earth. Now we know that the Earth itself is magnetised, rather as if there was a giant bar magnet inside it.

Study tip

Remember that the Earth has a magnetic south pole close to its geographical North Pole.

Magnetic materials

A compass needle is a *permanent magnet*. Like many bar magnets, it is made of hard steel. You have probably come across another type of magnetic material, called ferrite. This is a ceramic material used for making fridge magnets and the magnets sometimes used to keep cupboard doors shut. There are also small 'rare-earth' magnets in the headphones used with MP3 players, based on elements such as neodymium.

Most magnetic materials (including steel and ferrite) contain iron, the commonest magnetic element. For this reason, they are known as *ferrous materials* (from the Latin word *ferrum* meaning 'iron'). Other magnetic elements include cobalt and nickel. (If a material contains iron, this is not a guarantee that it will be magnetic. Stainless steel contains a lot of iron, but magnets will not stick to it.)

Magnetic materials may be classified as **hard** or **soft**. Table **16.1** summarises the difference. A soft magnetic material such as soft iron can be magnetised and demagnetised easily.

Magnetisation

Usually, magnetic materials are in an unmagnetised state, and they must be magnetised. Two methods

Type of magnetic material	Description	Examples	Uses
Hard retains magnetism well, but difficult to magnetise in the first place		hard steel	permanent magnets, compass needles, loudspeaker magnets
Soft easy to magnetise, but readily loses its magnetism		soft iron	cores for electromagnets, transformers and radio aerials

Table 16.1 Hard and soft magnetic materials. 'Hard steel' is both hard to bend and difficult to magnetise and demagnetise. 'Soft iron' is both easier to bend and easier to magnetise and demagnetise.

of doing this (called **magnetisation**) are described below:

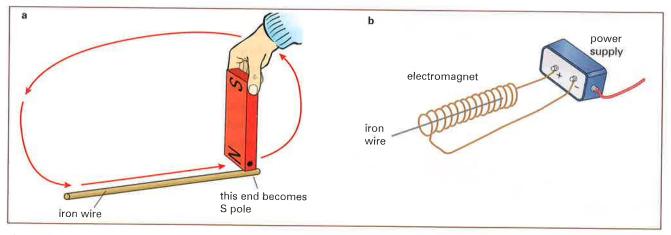
- 1 A piece of the material may be stroked with a permanent magnet. By stroking it consistently from one end to the other (never going in the reverse direction), it becomes magnetised (see Figure 16.4a).
- 2 Place the material in a strong magnetic field, as produced by an electromagnet. An electromagnet is a coil of wire and, for this purpose, it is connected to a battery or power supply so that a steady direct current (d.c.) flows through it (see Figure 16.4b). This produces a magnetic field inside the coil, and this field magnetises the material.

Demagnetisation

Just as there are several ways to magnetise a piece of magnetic material, there are several ways of demagnetising a magnet. Three methods of doing this (called **demagnetisation**) are listed below:

1 Hammer the magnet. When a magnet is placed in an east—west direction and hammered, it loses its magnetism. This explains why the magnets used in

- school labs gradually lose their magnetism if they are repeatedly dropped and bashed about.
- 2 Place the magnet in the field of an electromagnet that is connected to an alternating current (a.c.) supply. The magnetic field will vary back and forth. Gradually reduce the current to zero. The magnet will be demagnetised.
- **3** Heat the magnet. If its temperature goes above a certain temperature, it will lose its magnetism.


Study tip

Remember that a material that is hard to magnetise is also hard to demagnetise.

Induced magnetism

A bar magnet is an example of a permanent magnet. It can remain magnetised. Its magnetism does not get 'used up'. Permanent magnets are made of hard magnetic materials.

A permanent magnet can attract or repel another permanent magnet. It can also attract other *unmagnetised* magnetic materials. For example, a bar

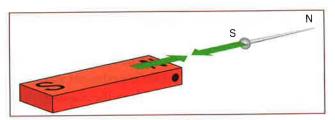
Figure 16.4 Two methods for magnetising an iron wire: **a** using a permanent magnet; and **b** using an electromagnet connected to a supply of direct current (d.c.).

magnet can attract steel pins or paper clips, and a fridge magnet can stick to the steel door of the fridge.

What is going on here? Steel pins are made of a magnetic material. When the north pole of a permanent

Activity 16.1 Making magnets

Skills


- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- A03.2 Plan experiments and investigations
- A03.3 Make and record observations, measurements and estimates
- AO3.4 Interpret and evaluate experimental observations and data
- AO3.5 Evaluate methods and suggest possible improvements

Make and test a magnet. Try to demagnetise it.

- 1 First, magnetise a length of iron wire by stroking it with a permanent magnet, as shown earlier in Figure 16.4a. You will need to stroke it 50 times or more from one end to the other, always in the same direction, and always with the same pole of the magnet.
- 2 Now decide how to test your magnet. Will it pick up iron filings, pins or paperclips? If you hang it up so that it can turn freely, will it point north-south?
- 3 Repeat steps 1 and 2 with a steel needle. Steel is a hard magnetic material. Can you magnetise it?
- 4 Try to demagnetise your iron wire. Bang it with a stone or hammer. Can you tell if it is weaker? Heat it with a Bunsen flame. Does this destroy its magnetism?
- 5 Can you demagnetise a magnetised iron wire using the opposite pole from the one you used to magnetise it?

Points to discuss

- Is your method good enough to tell whether the magnetised iron is stronger than the magnetised steel?
- How does induced magnetism come in to these experiments?

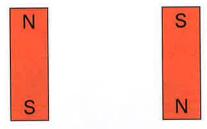


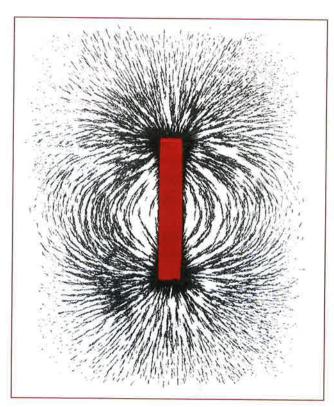
Figure 16.5 A steel pin is temporarily magnetised when a permanent magnet is brought close to it.

magnet is brought close to a pin, the pin is attracted (see Figure 16.5). The attraction tells us that the end of the pin nearest the magnetic pole must be a magnetic south pole, as shown in Figure 16.5. This is known as *induced magnetism*. When the permanent magnet is removed, the pin will return to its unmagnetised state (or it may retain a small amount of magnetism).

Questions

16.1 Two bar magnets are placed side by side as shown.

- a Copy the diagram and show the forces the two magnets exert on each other.


 State whether they will attract or repel each other.
- **b** One of the magnets is reversed so that its north pole is where its south pole was. Draw this new situation and show the forces the two magnets now exert on each other.
- **16.2** Iron is often described as a 'soft' magnetic material. Many types of steel are described as 'hard' magnetic materials.
 - **a** Explain the difference between these two types of material.
 - **b** Explain why a permanent magnet should be made of steel rather than iron.

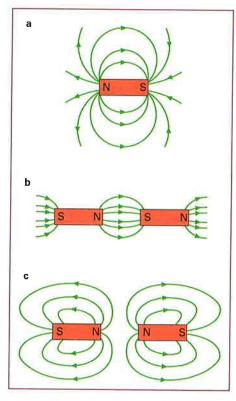
16.2 Magnetic fields

A magnet affects any piece of magnetic material that is nearby. We say that there is a **magnetic field** around the magnet. You have probably done experiments with iron filings or small compasses to show up the magnetic field of a magnet. Figure 16.6 shows the field of a bar magnet as revealed by iron filings.

Figure 16.7a shows how we represent the magnetic field of a single bar magnet, using *magnetic field lines*. Of course, the field fills all the space around the magnet, but we can only draw a selection of typical lines to represent it. The pattern tells us two things about the field:

- ◆ Direction. If you were to place a tiny compass at a point in the field, it would align itself along the field line at that point. We use a convention that says that field lines come out of north poles and go in to south poles.
- ◆ Strength. Lines close together indicate a strong field. We can also show the field patterns for two magnets attracting (Figure 16.7b) and repelling (Figure 16.7c) each other. Notice that there is a point between the two repelling magnets where there is no magnetic field.

Figure 16.6 The magnetic field pattern of a bar magnet is shown up by iron filings. The iron filings cluster most strongly around the two poles of the magnet. This is where the field is strongest.

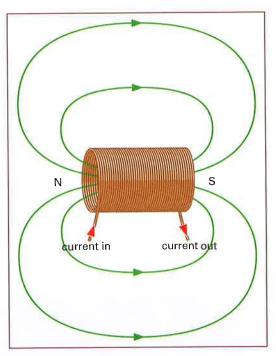

Plotting field lines

Iron filings can show up the pattern of the magnetic field around a magnet. Place the magnet under a stiff sheet of plain paper or (preferably) clear plastic. Sprinkle filings over the paper or plastic. Tap the paper or plastic to allow the filings to move slightly so that they line up in the field. You should obtain a pattern similar to that shown in Figures 16.6 and 16.7a.

An alternative method of doing this uses a small compass called a *plotting compass*. When a plotting compass is placed in a magnetic field, its needle turns to indicate the direction of the field. Activity 16.2 later describes how to use a plotting compass to show the pattern of a magnetic field.

Electromagnets

Using magnetic materials is only one way of making a magnet. An alternative method is to use an **electromagnet**. A typical electromagnet is made from a coil of copper wire. A coil like this is sometimes called a **solenoid**. When a current flows through the wire, there


Figure 16.7 a Field lines are used to represent the magnetic field around a bar magnet. b The attraction between two opposite magnetic poles shows up in their field pattern. c The field pattern for two like poles repelling each other.

is a magnetic field around the coil (Figure 16.8). Copper wire is often used, because of its low resistance, though other metals will do. The coil does not have to be made from a magnetic material. The point is that it is the electric current that produces the magnetic field.

You can see that the magnetic field around a solenoid (Figure 16.8) is similar to that around a bar magnet (Figure 16.7a). One end of the coil is a north pole, and the other end is a south pole. In Figure 16.8, the field lines emerge from the left-hand end, so this is the north pole.

There are three ways to increase the strength of an electromagnet:

- ◆ increase the current flowing through it the greater the current, the greater the strength of the field
- increase the number of turns of wire on the coil – this does not mean making the coil longer, but packing more turns into the same space to concentrate the field
- add a soft iron core an iron core becomes strongly magnetised by the field, and this makes the whole magnetic field much stronger.

Figure 16.8 A solenoid. When a current flows through the wire, a magnetic field is produced. The field is similar in shape to that of a bar magnet. Note that the field lines go all the way through the centre of the coil.

Activity 16.2 Plotting field lines

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

Plot the magnetic field pattern around a bar magnet and around an electromagnet.

- 1 Place a bar magnet in the centre of a sheet of paper and draw round it.
- 2 Place a plotting compass near one of the poles of the magnet. Mark dots 1 and 2 on the paper

to indicate the two ends of the compass needle, as shown in the picture.

- 3 Move the compass away from the magnet and position it so that one end of its needle is marked by dot 2. Mark dot 3 at the other end.
- 4 Continue this process, until you have moved round to the other pole of the magnet.
- 5 Remove the compass. The sequence of dots shows one of the field lines of the magnet's field. Draw a smooth line through the dots.
- **6** Repeat the process, starting at a slightly different position at the end of the magnet, to obtain another field line.

Electromagnets have the great advantage that they can be switched on and off. Simply switch off the current and the field around the coil disappears. This is the basis of a number of applications – for example, the electromagnetic cranes that move large pieces of metal and piles of scrap around in a scrapyard (Figure 16.9). The current is switched on to energise the magnet and pick up the scrap metal. When it has been moved to the correct position, the electromagnet is switched off and the metal is released.

Electromagnets are also used in electric doorbells, loudspeakers, electric motors, relays and transformers. These uses are described in detail later in Chapters 20 and 21.

Figure 16.9 Using an electromagnet in a scrapyard. With the current switched on, a steel object or pile of scrap can be lifted and moved. Then the current is switched off to release it.

Questions

- **16.3** Draw a diagram to show the field pattern between two magnets of equal strength whose south poles are placed close together.
- **16.4** Describe how an electromagnet could be used to separate copper from iron in a scrapyard.

The field around a solenoid

When an electric current flows through a solenoid, a magnetic field is produced inside and outside the coil (see Figure 16.8). This field is similar to that around a bar magnet:

- One end of the solenoid is the north pole and the other end is the south pole. Field lines emerge from the north pole and go in to the south pole.
- The field lines are closest together at the poles, showing that this is where the magnetic field is strongest.
- ◆ The lines spread out from the poles, showing that the field is weaker in these regions.

The strength of the field can be increased by increasing the current. The field can be reversed by reversing the direction of the current.

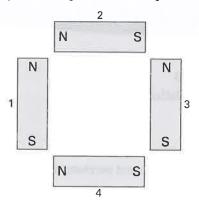
Study tip

Remember that magnetic field lines always come out of a north pole and go in to a south pole.

Question

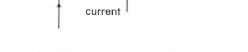
- **16.5 a** Sketch a diagram of the magnetic field pattern of a solenoid.
 - **b** How would the pattern change if the current through the solenoid was reversed?

Summary

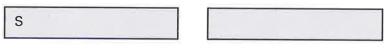

You should know:

- the forces between magnetic poles
- · about soft and hard magnetic materials
- methods of magnetisation
- methods of demagnetisation
 - how to represent magnetic fields using field lines
 - the comparison between electromagnets and permanent magnets.

End-of-chapter questions


- 1 a Copy and complete these two sentences:
 - i Like poles
 - ii Unlike poles
 - **b** Draw diagrams to illustrate those two sentences.
- 2 a Copy and complete the following two sentences to state the differences between hard and soft magnetic materials.
 - i magnetic materials are easy to magnetise and easy to demagnetise.
 - ii magnetic materials are difficult to magnetise; they retain their magnetism well.
 - **b** i Give **one** example of a hard magnetic material.
 - ii Give one example of a soft magnetic material.
- 3 State two methods by which a piece of unmagnetised steel can be magnetised.
- 4 State **two** methods by which a piece of magnetised steel can be demagnetised.
- 5 a Draw a diagram to show the field lines around a bar magnet.
 - **b** Draw a diagram to show the field lines between two bar magnets with opposite poles close to each other.
- 6 a State one way in which an electromagnet is different from a permanent bar magnet.
 - **b** State **one** way in which an electromagnet is similar to a permanent bar magnet.

7 The diagram shows four permanent magnets arranged to form a square.


- a Copy the diagram and indicate which pairs of magnets will attract one another and which will repel.
- **b** Draw a second diagram in which the four magnets are arranged in a square so that each magnet attracts the two other magnets to which it is closest.
- 8 An electromagnet is a coil of wire through which a current can be passed.
 - a State three ways in which the strength of the electromagnet can be increased. [3]
 - **b** An electromagnet can be switched on and off. Suggest **one** situation where this would be an advantage over the constant field of a permanent magnet.
- 9 a What is the difference between a hard magnetic material and a soft magnetic material?
 b Explain which you would choose for a permanent magnet.
 [2]
 - b Explain which you would choose for a permanent magnet.
 c Explain which you would choose for the core of an electromagnet.
- 10 A solenoid has a magnetic field similar to that of a bar magnet.

- a The diagram shows a bar magnet and a solenoid arranged so that they repel one another.

 Copy the diagram, leaving some space around it. Label the poles of the solenoid.
- **b** Add field lines to your diagram to represent the magnetic fields of the bar magnet and the solenoid.
- 11 a Magnets A and B, shown in the first diagram, attract each other.

magnet A

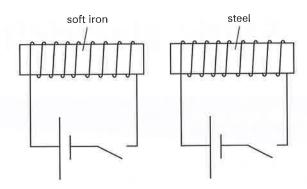
magnet B

The S pole of magnet A has been marked.

On a copy of this diagram, mark the polarities of the other poles, using the letters N or S.

[1]

[4]


[4]

[2]

[1]

[2]

b A soft-iron rod and a steel rod each have coils around them. Both rods are initially unmagnetised. The coils are attached to circuits, as shown in the second diagram.

i Copy the table below, referring to the soft-iron rod and the steel rod shown in the second diagram.
 Use the following statements to complete the table.
 magnetised loses its magnetism keeps its magnetism

	Switch closed	Switch open
Soft iron		
Steel		

- ii Which words apply to the force between the rods when the switches are closed? Choose **one** from: [1] no force attractive force repulsive force
- iii Which of the two arrangements in the second diagram would be used as the electromagnet on the crane in a scrap-metal yard?
- iv State one advantage that an electromagnet could have in comparison with a similar-sized permanent magnet.

[Cambridge IGCSE® Physics 0625/23, Question 9, October/November, 2012]

- 12 a State two advantages that electromagnets have, compared with permanent magnets. [2]
 - **b** For each of the lists below, choose the option that should be used to give the *strongest* electromagnet. [2]
 - i Number of turns on coil:

1000 turns 500 turns 2

250 turns

ii Type of core:

air

plastic

iron

iii Current:

3.0 A

2.0 A

1.0 A

[Cambridge IGCSE® Physics 0625/22, Question 9, May/June, 2011]

[2]

17 Static electricity

In this chapter, you will find out:

- about the forces between positive and negative electric charges
- how to explain electric forces in terms of electric fields
- how objects are charged by induction
- how static electricity is explained in terms of electrons.

A bright spark

Benjamin Franklin was an American, born in Boston in 1706. He was a scientist, as well as many other things – politician, printer, economist, musician and publisher, among various other occupations. His most famous experiment (Figure 17.1), carried out in 1752, involved him in a most dangerous activity, flying a kite in a thunderstorm. He was investigating lightning as part of his studies of static electricity.

Franklin believed that lightning was a form of static electricity. He pointed out that a lightning flash was similar in shape and colour to the sparks that could be produced in the laboratory. In the demonstration shown in Figure 17.1, Franklin attached a sharp-pointed metal wire to the top of a kite. He expected to draw down a spark from a lightning bolt. To avoid being electrocuted, he included a metal key at the bottom of the kite string, and attached a length of ribbon to the key. Holding the ribbon, he was relatively safe from electrocution (although other people were killed when they repeated his experiment). As a bolt of lightning struck the kite, Franklin saw the fibres of the kite string stand on end and a spark jumped from the key to the ground.

Franklin noticed that electrical sparks tend to jump from sharp points. He made use of this when he devised the lightning conductor. Today, most tall buildings have a sharply pointed metal rod projecting from their roofs, with a continuous metal rod running

Figure 17.1 Benjamin Franklin, flying a kite in an attempt to capture a bolt of lightning. Franklin showed that lightning is similar to the sparks produced in experiments on static electricity. Shortly after, a Swedish scientist called Richtmann was killed when he tried to repeat Franklin's experiment. His body was dissected to discover the effect of electricity on his organs.

down the side of the building and into the ground. When lightning strikes, it is most likely to hit a lightning conductor and be safely channelled to the ground. Franklin's invention was enormously popular with insurance companies (who required the buildings they insured to install them), and the number of fires caused by lightning decreased dramatically.

Franklin made great progress in developing theories of electricity. Many of the terms we use today were first used by him – positive and negative charge, battery and conductor, among others.

17.1 Charging and discharging

As well as lightning flashes, we experience **static electricity** in a number of ways in everyday life. You may have noticed tiny sparks when taking off clothes made of synthetic fibres. You may have felt a small shock when getting out of a car. An **electrostatic charge** builds up on the car and then discharges through you when you touch the metal door. You have probably rubbed a balloon on your clothes or hair and seen how it will stick to a wall or ceiling.

If you rub a plastic ruler with a cloth, both are likely to become electrically charged. You can tell that this is so by holding the ruler and then the cloth close to your hair – they attract the hair. (If your hair is not attracted, try some tiny scraps of paper instead.) You have observed that static electricity is generated by rubbing. You have also observed that a charged object may attract uncharged objects.

Now we have to think systematically about how to investigate this phenomenon. First, how do two charged objects affect one another? Figure 17.2 shows one way of investigating this. A plastic rod is rubbed with a cloth so that both become charged. The rod is hung in a cradle so that it is free to move. When the cloth is brought close to it, the rod moves towards the cloth (Figure 17.2a). If a second rod is rubbed in the same way and brought close to the first one, the hanging rod moves away (Figure 17.2b). Now we have seen both *attraction* and *repulsion*, and this suggests that there are two types of static electricity. Both rods have been treated in the same way, so we expect them to have the same type of electricity. The cloth and the rod must have different types.

The two types of static electricity are referred to as **positive charge** and **negative charge**. We can explain the experiments shown in Figure 17.2 by saying that the process of rubbing gives the rods one type of electric charge (say, negative), while the cloth is given the opposite type (say, positive). Figures 17.2c and 17.2d show the two experiments with the charges marked.

From these experiments, we can also say something about the forces that electric charges exert on each other:

- like charges repel
- unlike charges attract.

('Like charges' means charges that are of the same type – both positive, or both negative. 'Unlike charges' means charges of opposite type – one positive and the other

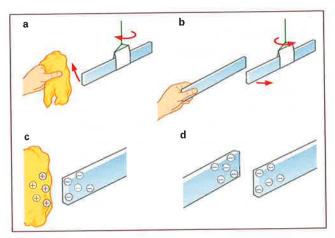


Figure 17.2 Two experiments to show the existence of two, opposite, types of static electricity. a The charged rod and cloth attract one another. b The two charged rods repel one another. c The rod and the cloth have opposite electric charges. d The two rods have electric charges of the same sign.

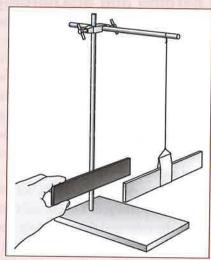
negative. People often remember this rule as 'opposites attract'.)

You can see that this rule is similar to the rule we saw for magnetic poles in Chapter 16. But do not confuse magnetism with static electricity! Magnetism arises from magnetic poles – static electricity arises from electric charges. When you rub a plastic rod, you are not making it magnetic.

Questions

- **17.1** Two positively charged polystyrene spheres are held close to one another. Will they attract or repel one another?
- **17.2** A polythene rod is rubbed using a woollen cloth. The rod gains a negative charge.
 - **a** What can you say about the charge gained by the cloth?
 - **b** Will the rod and the cloth attract or repel each other?
- **17.3** Here are two things you may have noticed:
 - If you rub a comb through your hair, your hair is attracted to the comb.
 - ◆ After combing, your hair is light and fluffy the individual hairs repel each other.

What do these observations tell you about the electric charges on your hair and on the comb?


Activity 17.1 Investigating static electricity

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
AO3.3 Make and record observations, measurements and estimates

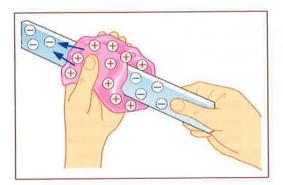
Try out some basic experiments to find out about static electricity.

- 1 Select acrylic, polythene and glass rods. You need to be sure that you can place the rods so that they can turn freely, either by hanging them using string or thread, or by placing them on an upturned watch glass. Try this out with your rods.
- 2 Rub a polythene rod with a woollen cloth, making sure that you rub the full length of the rod. Hang the rod or place it on a watch glass.
- 3 Rub another polythene rod and bring one end close to an end of the first rod. Do they attract or repel?

- 4 Rub an acrylic or glass rod and repeat the test. What do you observe?
- 5 Try different combinations of rods. Try a cloth of a different fabric. Given that a polythene rod, rubbed with a woollen cloth, gains a negative charge, what can you say about the charges gained by the cloth and by the other rods?
- **6** Blow up a balloon and rub it. Can you determine whether it gains positive or negative charge?

17.2 Explaining static electricity

Before Benjamin Franklin and other scientists started carrying out their systematic experiments on static electricity, little was known about it. It had been known for centuries that, when rubbed, amber could attract small pieces of cloth or paper. Amber is a form of resin from trees, which has become fossilised. It looks like clear, orange plastic. The Greek name for amber is *elektron*, and this is where we get the name of the tiny charged particles (electrons) that account for electricity.


Franklin, and those who worked on the problem at the same time as him, had no idea about electrons – these particles were not discovered until a hundred years later. However, that did not stop them from developing a good understanding of static electricity. In the discussion that follows, we will talk about electrons. After all, they were discovered over a century ago, and they make it much easier to understand what is going on in all aspects of electricity.

Friction and charging

It is the force of friction that causes charging. When a plastic rod is rubbed on a cloth, friction transfers tiny particles called **electrons** from one material to the other. If the rod is made of polythene, it is usually the case that electrons are rubbed off the cloth and onto the rod.

Electrons are a part of every atom. They are negatively charged, and they are found on the outside of the atom. Since they are relatively weakly held in the atom, they can be readily pulled away by the force of friction. An atom has no electric charge – we say that it is **neutral**. When an atom has lost an electron, it becomes positively charged.

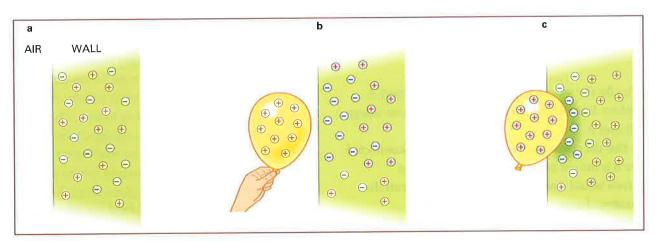
Since a polythene rod becomes negatively charged when it is rubbed with a silk cloth, we can imagine electrons being rubbed from the cloth onto the rod (see Figure 17.3). It is difficult to explain why one material pulls electrons from another. The atoms that make up polythene contain positive charges, and these must attract electrons more strongly than those of the silk cloth.

Figure 17.3 When a polythene rod is rubbed with a silk cloth, electrons are transferred from the silk to the polythene. The silk is left with a positive charge.

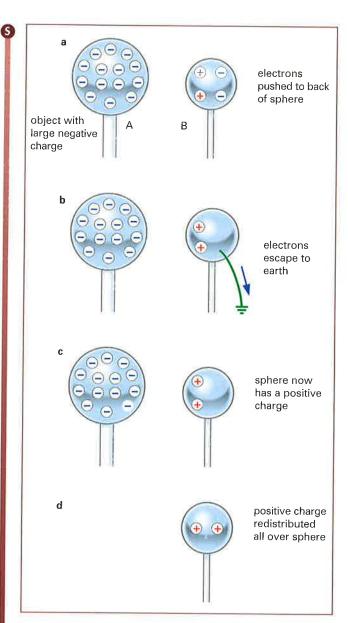
Study tip

Remember that it takes two different materials to generate static electricity. One material becomes positive, the other negative.

Charging by induction


A charged object can attract uncharged objects. For example, scatter some tiny pieces of paper on the bench. Rub a polythene rod on a woollen cloth. Both the charged rod and the charged cloth will attract the paper. This is the same effect as rubbing a balloon on your clothes and sticking it to a wall (Figure 17.4). An uncharged object (the wall) is attracted by a charged one (the balloon). How does this happen?

Suppose the balloon has a positive charge. It must be attracted to a negative charge in the wall. The wall itself is neutral (uncharged), but its atoms are made up of positively and negatively charged particles (Figure 17.4a). When the balloon is brought close to the wall, its negative charges (electrons) move towards the balloon, because they are attracted by it (Figure 17.4b). They may not move very far, but the effect is enough to give the surface of the wall a negative charge, which attracts the balloon (Figure 17.4c).


We say that a negative charge has been *induced* on the wall. This process is known as charging by **induction**. The same process occurs when the charged rod and cloth attract scraps of paper. The negative rod induces a positive charge on the paper, by repelling electrons away. The positive cloth attracts the electrons.

We can use charging by induction to charge a metal object, as shown in Figure 17.5. We start with two objects: an object A with a large negative charge, and an uncharged metal sphere B on an insulating stand. The method is as follows.

- **a** Object A has a large negative charge. When the metal sphere B is placed near it, electrons in the sphere are repelled away. The front of the sphere (near A) has an induced positive charge.
- **b** Now the sphere is touched, either by a hand or by a wire connected to earth. This allows electrons to escape from the sphere.
- **c** The connection is removed. Now the sphere has a positive charge.

Figure 17.4 a The wall is neutral, because it has equal amounts of positive and negative charge. **b** The charged balloon attracts the negative charges in the wall, so that they move towards it. **c** The positive balloon and the negative surface of the wall stick together.

Figure 17.5 The four steps in charging a metal sphere by induction.

d Finally, the sphere B is taken away from object A. Sphere B has a uniformly distributed positive charge all over it.

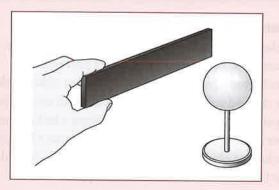
Note that the connection to earth must be disconnected *before* B is moved away from A. Otherwise, the electrons would simply run back up to B to neutralise its positive charge.

Note also that the sphere B and the charged object A *never touch*. Sphere B gets a charge that is opposite in sign to that of object A.

Activity 17.2 Charging by induction

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)


A03.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

Use the process of induction to charge an object. Then test its charge.

- 1 A polythene rod gains a negative charge when rubbed using a woollen cloth. Rub a rod to charge it up.
- 2 Bring the rod close to a metal sphere on an insulating stand, but do not allow them to touch.

- While the rod is close to the sphere, touch the sphere momentarily with your finger tip.

 Remove your finger.
- **4** Move the rod away again. The sphere should now have a positive charge because negative charges (electrons) have flowed through you to earth.
- 5 Test the charge on the sphere as follows. Hang a polythene rod so that it is free to turn. Charge it by rubbing so that it has a negative charge. Bring the charged sphere close do they attract?
- 6 Now use your positively charged sphere to test the charges on other rods (glass, acrylic).
- 7 Extend your investigation. Find out what charge the sphere gains if it is touched by a charged polythene rod.

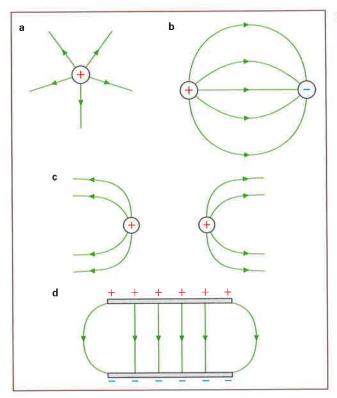
- **17.4** Draw a diagram to show how a negatively charged polythene rod can attract an uncharged scrap of paper.
- **17.5 a** What charge does an electron have, positive or negative?
 - **b** Would two electrons attract or repel one another?

17.3 Electric fields and electric charge

A charged object can affect other objects, both charged and uncharged, without actually touching them. For example, a charged plastic rod can exert a force on another charged rod placed close by.

We say that there is an **electric field** around a charged object. Any charged object placed in the field will experience a force on it.

Take care not to confuse electric fields with magnetic fields. A magnet does not attract electric charges. A charged object does not attract a magnet.


Representing an electric field

A charged object is surrounded by an electric field. If a charged object moves into the electric field of a charged object, it will experience a force – it will be attracted or repelled. Figure 17.6 shows how we represent an electric field by *lines of force* (or *electric field lines*), in a similar way to the representation of a magnetic field by magnetic field lines.

The lines of force are shown coming out of a positive charge and going in to a negative charge. This is because the lines indicate the direction of the force on a *positive* charge placed in the field. A positive charge is repelled by another positive charge and attracted by a negative charge.

When two oppositely charged objects are placed close together, they attract one another. Two objects with the same charge repel each other. You can see this in the patterns made by their lines of force.

Figure 17.6d shows the field between two oppositely charged parallel plates. The lines of force between the plates are straight and parallel to one another (except at the edges).

Figure 17.6 The electric field around a charged object is represented by lines of force: **a** an isolated positive charge; **b** two oppositely charged objects; **c** two like charges; and **d** two parallel plates with opposite charges.

Study tip

Remember that electric field lines start at positive charges and end at negative charges.

What is electric charge?

In physics, we find it relatively easy to answer questions like 'What is a rainbow?' or 'How does an aircraft fly?' It is much harder to answer an apparently simple question like 'What is electric charge?' We have to answer it by saying how objects with electric charge behave. Objects with the same sign of charge repel one another. Objects with opposite charge attract. This is not a very satisfying answer, because magnetic poles behave in the same way: north poles repel north poles and attract south poles. Because electric charge is a fundamental property of matter, we have to get a feel for it, rather than having a clear definition.

The electric force between two charged objects is one of the fundamental forces of nature. (The force of gravity

between two masses is another fundamental force.) The electric force holds the particles that make up an atom together. It holds atoms together to make molecules, and it holds molecules together to make solid objects. Just think: whenever you stand on the floor, it is the electric force between molecules that prevents you from falling through the floor. It is a very important force.

Charged particles

We have already seen that *electrons* are the charged particles that are transferred from one object to another when they are rubbed together. Electric charge is a property of the particles that make up atoms.

Charge is measured in **coulombs** (C), named after Charles-Augustin de Coulomb, a French physicist who worked on static electricity at about the same time as Benjamin Franklin. He discovered that the force between two charged objects depends on how big their charges are and on how far apart they are.

An electron is a negatively charged particle. It is much smaller than an atom, and only weakly attached to the outside of the atom. It is held there by the attraction of the positively charged nucleus of the atom. The nucleus is positively charged because it contains positively charged particles called **protons**.

An electron has a very tiny amount of electric charge. The **electron charge** is so small that it takes over 6 million million million electrons to make 1 C of charge:

electron charge =
$$-0.000\,000\,000\,000\,000\,000\,16\,C$$

= $-1.6\times10^{-19}\,C$

A proton has exactly the same size of charge as an electron, but positive, so the **proton charge** is:

proton charge =
$$+0.000\,000\,000\,000\,000\,000\,16\,C$$

= $+1.6 \times 10^{-19}\,C$

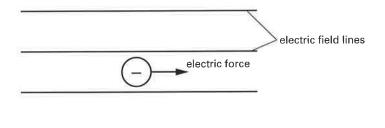
No-one knows why these values are *exactly* the same size (or even if they *are* exactly the same size), but it is fortunate that they are because it means that an atom that contains, say, six protons and six electrons is electrically neutral. If all the objects around us were made of charged atoms, we would live in a shocking world!

Questions

- 17.6 Two identical metal spheres are placed close to one another. One is given a large negative charge. The two are then connected by a wire. Use the idea of electric force to explain what happens next.
- **17.7 a** Draw a diagram to represent the electric field around a positively charged sphere.
 - **b** Draw a diagram to represent the electric field between two horizontal parallel plates. The upper plate has a positive charge and the lower plate has a negative charge.

Summary

You should know:


- about charging by friction
- about the forces between charges
- the electron transfer model of charging
- S about charging by induction
- S about electric charge.

End-of-chapter questions

- 1 Copy and complete the following sentences, choosing the correct word from each pair.
 - **a** When two objects are *pushed | rubbed* together, the force of *friction | magnetism* causes them to have *similar | opposite* electric charges.
 - **b** Two positive charges will attract / repel each other; positive and negative charges attract / repel each other.
- 2 Copy and complete the following sentences, choosing the correct word from each pair.
 - a Objects gain an electric charge when they gain or lose atoms / electrons.
 - **b** Electrons have a *positive / negative* charge.
 - c An object that loses electrons becomes positively / negatively charged.
- 3 Copy and complete the following sentences, choosing the correct word from each pair.

A *charged / uncharged* object may *attract / repel* an uncharged object. If the object has a positive charge, it will *attract / repel* electrons in the uncharged object. The objects then *attract / repel* each other. This is called charging by *conduction / induction*.

4 The diagram shows an object with a negative electric charge. It has been placed in a uniform electric field. The arrow shows the direction of the electric force on the charged object.

- **a** The object is now replaced by one with a positive charge. Draw a similar diagram to represent this. Show the direction of the electric force on the object.
- **b** Add arrows to the electric field lines in your diagram to show the direction of the field. State how you know the direction of the field.
- 5 Copy and complete the table, by adding the name of the unit and the symbol for the unit for the two quantities.

Quantity	Unit	Symbol for unit
force		
electric charge		

- 6 When a Perspex rod is rubbed on a woollen cloth, the rod acquires a negative electric charge.
 - a What type of electric charge does the cloth acquire?

[1]

b What can you say about the amounts of charge on the two charged items?

- [1]
- c If you had two Perspex rods charged up in this way, how could you show that they both have electric charges of the same sign?

[2]

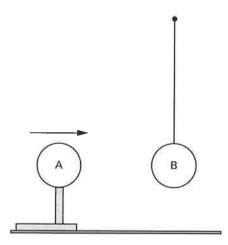
a If you rub a balloon on woollen clothing, the balloon gains a negative electrostatic charge. Use the idea of the movement of electrons to explain this.

[3]

b If the balloon is held close to an uncharged scrap of paper, the paper and the balloon will attract each other. Use the idea of charging by induction to explain this.

[3]

- a A girl has two metal bars, 1 and 2.
 - When the girl holds one end of bar 1 near a magnet, she finds that it attracts both the N pole and the S pole of the magnet. What does this tell you about bar 1?

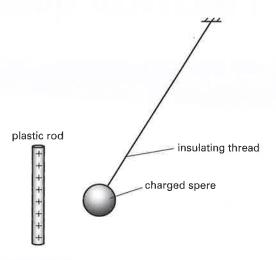

[2]

ii When the girl holds one end of bar 2 near the magnet, it attracts the N pole of the magnet, but repels the S pole.

What does this tell you about bar 2?

[1]

b In another experiment, the girl uses two table-tennis balls A and B. Each is coated with a thin layer of conducting material. Ball A is mounted on an insulating stand and ball B is suspended from a thin nylon thread. The arrangement is shown in the diagram.



Ball A is given a negative charge, and is slowly moved towards ball B until it touches. Predict what is seen to happen.

[2]

[Cambridge IGCSE® Physics 0625/23, Question 9, October/November, 2011]

- 9 a Suggest how a plastic rod may be given an electrostatic charge.
 - A charged sphere is suspended on an insulating thread.
 When a plastic rod with a positive charge is held near the suspended charged sphere, the sphere moves to the position shown in the diagram.

- i State the sign of the charge on the sphere.
- ii Give the reason for your answer to **b** i.

[2]

[2]

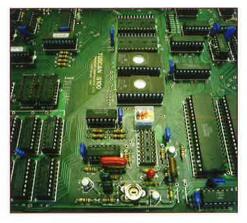
- c On a copy of the diagram, draw an arrow to show the electrostatic force on the sphere.
- [1]
- d The positively-charged plastic rod is removed and replaced by a plastic rod with a negative charge.
 Describe the position that the suspended sphere now takes.

[Cambridge IGCSE® Physics 0625/23, Question 10, October/November, 2012]

18 Electrical quantities

In this chapter, you will find out:

- the difference between conductors and insulators
- how to measure electric current and potential difference
- how electric current is related to electron flow
 - how to measure and calculate electrical resistance
- S → how to calculate energy and power in electric circuits.


Model circuits

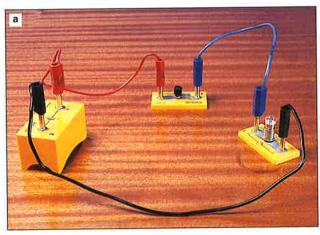
You have probably made electric circuits in the lab, and looked at some real-life circuits. The circuits that you have experimented with are simplified models for circuits that have real purposes in the world. It makes sense to start with simple circuits to build up a picture of how electric current flows.

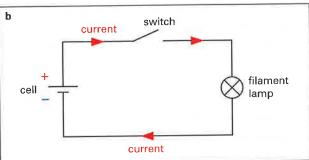
Figure 18.1 shows part of the electric circuit that carries power from a generating station to places where it is used. The electric current flows through thick metal cables, held above ground by pylons. Figure 18.2 shows 'chips' (integrated circuits) in a computer, where electric current flows through silicon. Chips are designed to be as small as possible, because the flow of electric current is not instantaneous. Current takes less time to flow around

Figure 18.1 These cables carry large electric currents.

Figure 18.2 In a computer chip, the currents are very small. a small component than a larger one. So we have two general uses for electric circuits:

- ◆ Electricity can be used to transport energy. The circuit contains devices for transforming energy. In a torch, energy is transferred electrically from the battery to the bulb, where it is transformed into light and heat.
- ◆ Electricity can be used to transport information. Computers manipulate digital information to produce pictures, sounds and new data. Our bodies have electric circuits – our brain and nerves handle information electrically.


This chapter and the next look at electric circuits in detail. We study the different components used in circuits to control the current that flows and the energy that is transferred or transformed.


18.1 Current in electric circuits

We use electric circuits to transfer energy from a battery or power supply to components in the circuit, which then transfer the energy to their surroundings. For an electric **current** to flow, two things are needed: a complete circuit for it to flow around, and something to push it around the circuit.

If an electric **current** is to flow, two things are needed: a complete circuit for it to flow around, and something to push it around the circuit. The 'push' might be provided by a **cell**, battery or power supply. A **battery** is simply two or more cells connected end-to-end. In most familiar circuits, metals such as copper or steel provide the circuit for the current to flow around. Figure **18.3a** shows how a simple circuit can be set up in the lab. Once the switch is closed, there is a continuous metal path for the current to flow along. Current flows from the positive terminal of the battery (or cell). It flows through the switch and the filament lamp, back to the negative terminal of the battery. Such a current that flows in the same direction all the time is called **direct current** (d.c.).

Figure 18.3b shows the same circuit as represented by a circuit diagram. Each component has its own standard

Figure 18.3 a A simple electric circuit, set up in a lab. **b** The same circuit represented as a circuit diagram.

symbol. If you imagine the switch being pushed so that it closes, it is clear from the diagram that there is a continuous path for the current to flow around the circuit.

It is obvious how the switch in Figure 18.3a works. You push the springy metal downwards until it touches the other metal contact. Then the current can flow through it. Most switches work by bringing two pieces of metal into contact with one another, though you cannot usually see this happening. It is worth having a look inside some switches to see how they work. (Of course, they must not be connected in a circuit when you examine them!)

Similarly, take a look at some filament light bulbs, like the one in Figure 18.3a. Every bulb has two metal contacts, for the current to flow in and out. Inside, one fine wire carries the current up to the filament (which is another wire), and a second wire carries the current back down again. Notice also how the circuit symbols for these and many other components have two connections for joining them into a circuit.

Study tip

In the circuit symbol for a cell, the longer line represents the positive terminal.

Good conductors, bad conductors

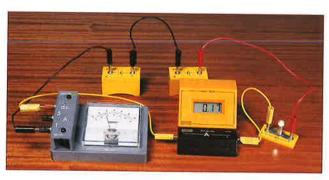
The wires we use to connect up circuits are made of metal because metals are good **conductors** of electric current. The metal is usually surrounded by plastic, so that, if two wires touch, the electric current cannot pass directly from one to another (a short circuit). Plastics (polymers) are good electrical **insulators**.

- Good conductors: most metals, including copper, silver, gold, steel.
- Good insulators: polymers (such as Perspex or polythene), minerals, glass.

In between, there are many materials that do conduct electricity, but not very well. For example, liquids may conduct, but they are generally poor conductors.

People can conduct electricity – that is what happens when you get an electric shock. A current passes through your body and, if it is big enough, it makes your muscles contract violently. Your heart may stop, and burns may also result. Our bodies conduct because the water in our tissues is quite a good electrical conductor.

What is electric current?


When a circuit is complete, an electric current flows.

Current flows from the positive terminal of the supply, around the circuit, and back to the negative terminal.

What is actually travelling around the circuit? The answer is electric **charge**. The battery or power supply in a circuit provides the push needed to make the current flow. This 'push' is the same force that causes electric charges to attract or repel one another.

A current is a flow of electric charge.

In a metal, the current is a flow of electrons. These are the negatively-charged particles you learned about in Chapter 17.

Figure 18.4 Ammeters measure electric current, in amps (A). There are two types: analogue (on the left) and digital (on the right).

Measuring electric current

To measure electric current, we use an **ammeter**. There are two types, as shown in Figure 18.4.

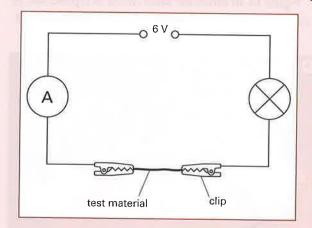
- ◆ An *analogue* meter has a needle, which moves across a scale. You have to make a judgement of the position of the needle against the scale.
- A digital meter gives a direct read-out in figures.
 There is no judgement involved in taking a reading.

Activity 18.1 Measuring current

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.2 Plan experiments and investigations


AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data

AO3.5 Evaluate methods and suggest possible improvements

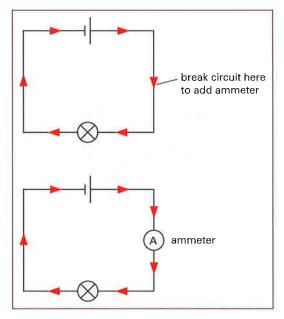
Conductors allow electric current to flow in a circuit. You can use an ammeter to measure the current.

- 1 Select a 6 V battery or a variable power supply. If you are using a variable power supply, set its output to 6 V.
- 2 Connect up a series circuit with the battery or supply, a 6 V lamp and an ammeter. Measure the current flowing in the circuit.
- 3 Make a break in the circuit so that you can include two crocodile clips. Attach one clip to

each end of a piece of metal. You can tell if the circuit is complete in two ways: the lamp lights up, and the ammeter shows the current flowing.

- 4 Try different materials between the two clips. Which are conductors and which are insulators?
- 5 Metals are conductors of electricity. You can compare the different metal samples by placing them in turn between the crocodile clips. How could you make this a fair test to compare the different metals?

An ammeter is connected into a circuit *in series* – that is to say, the current flows in through one terminal (red, positive) and out through the other (black, negative). If the meter is connected the wrong way round, it will give negative readings. To add an ammeter to a circuit, the circuit must be broken (see Figure 18.5).


In a simple series circuit like the one shown in Figure 18.5, it does not matter where the ammeter is added, since the current is the same all the way round the circuit. It does not get used up as it flows through the lamp or other components in the circuit.

The reading on an ammeter is in **amps** (A). The **ampere** (shortened to amp) is the SI unit of current. Smaller currents may be measured in milliamps (mA) or microamps (μ A):

1 milliamp = 1 mA =
$$0.001 A = 10^{-3} A$$

1 microamp = $1 \mu A = 0.000 001 A = 10^{-6} A$

Questions

- **18.1 a** What instrument is used to measure electric current?
 - **b** How should it be connected in a circuit?
 - c Draw its circuit symbol.
- **18.2** A circuit is set up in which a cell makes an electric current flow through a lamp. Two ammeters are included, one to measure the current flowing into the lamp, the other to measure the current flowing out of the lamp.
 - **a** Draw a circuit diagram to represent this circuit.
 - **b** Add an arrow to show the direction of the current around the circuit.
 - **c** What can you say about the readings on the two ammeters?
- **18.3 a** Name two materials that are good electrical conductors.
 - **b** Name two materials that are good electrical insulators.

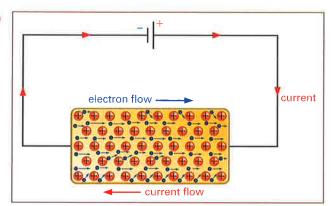
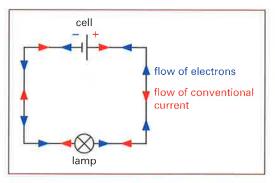


Figure 18.5 Adding an ammeter to a circuit. The ammeter is connected in series, so that the current can flow through it.


Two pictures: current and electrons

Metals are good electrical conductors because they contain electrons that can move about freely. (These have already been mentioned in Chapters 11 and 17.) The idea is that, in a bad conductor such as most polymers, all of the electrons in the material are tightly bound within the atoms or molecules, so that they cannot move. Metals are different. While most of the electrons in a metal are tightly bound within their atoms, some are free to move about within the material. These are called conduction electrons (see Figure 18.6). A voltage, such as that provided by a battery or power supply, can start these conduction electrons moving in one direction through the metal, and an electric current flows. Since electrons have a negative electric charge, they are attracted to the positive terminal of the battery.

Electric current flows from positive to negative. Figure 18.7 shows the direction of flow of charge around a simple circuit. We picture positive charge flowing out of the positive terminal, around the circuit and back into the cell at the negative terminal. Now, we know that in a metal it is the negatively charged electrons that move. They leave the negative terminal of the cell, and flow around to the positive terminal, in the

Figure 18.6 In a metal, some electrons are free to move about. These are known as conduction electrons. In copper, there is one conduction electron for each atom of the metal. The atoms, having lost an electron, are positively charged ions. A battery pushes the conduction electrons through the metal. The force is the attraction between unlike charges that was discussed in Chapter 17.

Figure 18.7 Two ways of picturing what happens in an electric circuit: conventional current flows from positive to negative; electrons flow from negative to positive.

opposite direction to the current. Hence we have two different pictures of what is going on in a circuit.

We can think of *conventional current*, a flow of positive charge, moving from positive to negative. Conventional current is rather like a fluid moving through the wires, just like water moving through pipes. This picture does not tell us anything about what is going on inside the wires or components of a circuit. However, it is perfectly good for working out many things to do with a circuit: what the voltage will be across a particular component, for example, or how much **electrical energy** will be transferred to a particular lamp.

Alternatively, we can think of *electron flow*, a movement of conduction electrons, from negative to positive. As we will see shortly, this picture can allow us to think about what is going on inside the components

of a circuit: why a resistor gets warm when a current flows through it, for example, or why a diode allows current to flow in one direction only.

These two pictures are both **models**. The electron flow picture is a *microscopic* model, since it tells us what is going on at the level of very tiny particles (electrons and ions). The conventional current picture is a *macroscopic* model (a large-scale model).

The electrons in a circuit flow in the opposite direction to the electric current. It is a nuisance to have to remember this. It stems from the early days of experiments on static electricity. Benjamin Franklin realised that there were two types of electric charge, which he called positive and negative. He had to choose which type he would call positive, and his choice was to say that, when amber was rubbed with a silk cloth, the amber acquired a negative charge. Franklin was setting up a *convention*, which other scientists then followed – hence the term *conventional current*. He had no way of knowing that electrons were being rubbed from the silk to the amber, but his choice means that we now say that electrons have a negative charge.

Study tip

Remember that conventional current and electron flow are in opposite directions around a circuit.

Current and charge

An ammeter measures the rate at which electric charge flows past a point in a circuit – in other words, the amount of charge that passes per second. We can write this relationship between current and charge as an equation, as shown, using the quantities and symbols given in Table 18.1.

Key definition

current – the rate at which electric charge passes a point in a circuit.

current (A) =
$$\frac{\text{charge (C)}}{\text{time (s)}}$$

 $I = \frac{Q}{t}$

Quantity	Symbol for quantity	Unit	Symbol for unit
current	I	amps	A
charge	Q	coulombs	С
time	t	seconds	s

Table 18.1 Symbols and units for some electrical quantities.

So a current of $10\,\mathrm{A}$ passing a point means that $10\,\mathrm{C}$ of charge flows past that point every second. You may find it easier to recall this relationship in the following form:

charge (C) = current (A) × time (s)
$$Q = It$$

So if a current of 10 A flows around a circuit for 5 s, then 50 C of charge flows around the circuit.

Worked example 18.1 shows how to calculate the charge that flows in a circuit.

Worked example 18.1

A current of 150 mA flows around a circuit for one minute. How much electric charge flows around the circuit in this time?

Step 1: Write down what you know, and what you want to know. Put all quantities in the units shown in Table 18.1.

$$I = 150 \,\mathrm{mA} = 0.15 \,\mathrm{A} \,(\mathrm{or}\, 150 \times 10^{-3} \,\mathrm{A})$$

t = 1 minute = 60 s

Q = ?

Step 2: Write down an appropriate form of the equation relating *Q*, *I* and *t*. Substitute values and calculate the answer.

Q = It

 $Q = 0.15 \,\mathrm{A} \times 60 \,\mathrm{s} = 9 \,\mathrm{C}$

So 9 coulombs of charge flow around the circuit.

Questions

- **18.4 a** In which direction does conventional current flow around a circuit?
 - **b** In which direction do electrons flow?
- **18.5 a** What is the unit of electric current?
 - **b** What is the unit of electric charge?
- **18.6 a** How many milliamps are there in 1 amp?
 - **b** How many microamps are there in 1 amp?
- **18.7** Which of the following equations shows the correct relationship between electrical units? 1 A = 1 C/s
 - 1 C = 1 A/s
- **18.8** If 20 C of charge pass a point in a circuit in 1.0 s, what current is flowing?
- **18.9** A current of 4.0 A flows around a circuit for 10 s. How much charge flows around the circuit in this time?

18.2 Electrical resistance

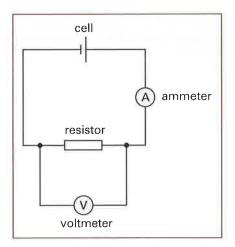
If you use a short length of wire to connect the positive and negative terminals of a cell (a battery) together, you can do a lot of damage. The wire and the cell may both get hot, as a large current will flow through them. There is very little **electrical resistance** (usually simply called **resistance**) in the circuit, so the current is large. Power supplies are protected by **trip switches**, which cause them to cut out if too large a current flows.

The current flowing in a circuit can be controlled by adding components with electrical resistance to the circuit. The greater the resistance, the smaller the current that will flow. Figure 18.8 shows a circuit in which a cell pushes a current through a resistor. The cell provides the voltage needed to push the current through the resistor. Here, 'voltage' is a rather loose term, and we should say that there is a p.d. (potential difference) across the resistor. Potential difference is another term for voltage, and is measured in volts (V) using a voltmeter (which, like an ammeter, can be either analogue or digital). It indicates that there is a difference in electrical potential across the resistor. This is rather like the difference in height that makes a ball roll downhill.

There is a special name for the p.d. across a cell. It is called the **e.m.f.** of the cell, and is also measured in volts. (The letters e.m.f. stand for **electro-motive force**, but this can be misleading since e.m.f. is a voltage, not a force.) Any component that pushes a current around a circuit is said to have an e.m.f. – cells, batteries, power supplies, dynamos and so on.

Questions

- **18.10 a** What do the letters p.d. stand for?
 - **b** What meter is used to measure p.d.?
 - c Draw the symbol for this meter.
- **18.11 a** What name is given to the p.d. across a cell or battery?
 - **b** What unit is this measured in?


Defining resistance

How much current can a cell push through a resistor? This depends on the resistance of the resistor. The greater its resistance, the smaller the current that will flow through it. The resistance of a component is measured in **ohms** (Ω) and is defined by this equation:

resistance (
$$\Omega$$
) = $\frac{\text{potential difference (V)}}{\text{current (A)}}$
 $R = \frac{V}{I}$

The circuit shown in Figure 18.8 illustrates how we can measure the resistance of a resistor (or of any other component). We need to know the current flowing through the resistor, measured by the ammeter. We also need to know the p.d. across it, and this is measured by the voltmeter connected *in parallel* across it.

The reading on a voltmeter is in **volts** (**V**). Smaller 'voltages' may be measured in millivolts (mV) or microvolts (μ V). Take care not to confuse (*italic*) V, used as the symbol for an unknown potential difference or voltage, with (upright) V, used as the symbol for the unit, volts. In books, the first of these is printed as *italic* V (as here), but you cannot tell the difference when they are written.

Figure 18.8 The cell provides the p.d. needed to push the current around the circuit. The amount of current depends on the p.d. and the resistance of the resistor. The ammeter measures the current flowing through the resistor. The voltmeter measures the p.d. across it. This circuit can thus be used to find the resistance of the resistor.

A voltmeter is always connected across the relevant component, because it is measuring the potential difference between the two ends of the component.

- Ammeters are connected *in series*, so that the current can flow through them.
- Voltmeters are connected in parallel across a component, to measure the p.d. across the component.

Worked example 18.2 and Figure 18.9 show how to calculate the resistance of a resistor from measurements of current and p.d. Notice that we can show the current as an arrow entering (or leaving) the resistor. The p.d. is shown by a double-headed arrow, to indicate that it is measured across the resistor. The resistance is simply shown as a label on or next to the resistor – it does not have a direction.

What is an ohm?

Let us think about the equation that defines what we mean by resistance:

$$R = \frac{V}{I}$$

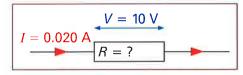


Figure 18.9 The quantities involved in Worked example 18.2.

Worked example 18.2

A resistor allows a current of 0.02 A to flow through it when there is a p.d. of 10.0 V between its ends. What is its resistance?

Step 1: Write down what you know, and what you want to know. (You may prefer to write these quantities on a sketch of the situation – see Figure 18.9 for this particular example.)

current I = 0.020 A

p.d. V = 10.0 V

resistance R = ?

Step 2: Write down the equation for *R*. Substitute values and calculate the answer.

$$R = \frac{V}{I} = \frac{10.0 \text{ V}}{0.02 \text{ A}} = 500 \Omega$$

So the resistance of the resistor is 500Ω .

We can see that it takes a p.d. of $10\,V$ to make a current of $1\,A$ flow through a $10\,\Omega$ resistor. It takes $20\,V$ to make $1\,A$ flow through a $20\,\Omega$ resistor, and so on. Hence resistance (in Ω) tells us how many volts are needed to make $1\,A$ flow through that resistor. To put it another way:

one ohm is one volt per amp $1 \Omega = 1 \text{ V/A}$

In the case of Worked example 18.2, it would take 500 V to make 1 A flow through the 500Ω resistor.

Study tip

Remember: it takes 10 V to make a current of 1 A flow through a $10\,\Omega$ resistor.

Changing current

You can think of an electric circuit as an obstacle race. The current (or flow of charge) comes out of the positive terminal of the cell and must travel around the circuit to the negative terminal. Along the way, it must pass through the different components. The greater their resistance, the harder it will be for the charge to flow, and so the current will be smaller.

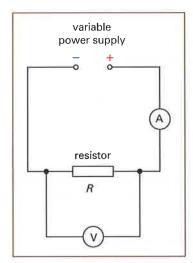
The greater the resistance in the circuit, the smaller the current that flows.

However, we can make a bigger current flow by increasing the p.d. that pushes it. A bigger p.d. produces a bigger current.

The greater the p.d. in a circuit (or across a component), the greater the current that flows.

Through thick and thin

This idea of an obstacle race can help us to think about the resistance of wires of different shapes. A long, thin wire has more resistance than a short, fat one. Imagine an obstacle course that includes pipes of different sizes through which the runners have to pass. It is easy to get through a short pipe with a large diameter. It is much harder when the pipe is long and narrow.


- The longer a wire, the greater is its resistance.
- The greater the diameter of a wire, the less is its resistance.

Questions

- **18.12 a** What is the resistance of a lamp if a current of 2.0 A flows through it when it is connected to a 12 V supply?
 - **b** If the p.d. across the lamp is increased, will the current flowing increase or decrease?
- **18.13** A student cuts two pieces of wire, one long and one short, from a reel.
 - **a** Which piece of wire will have the greater resistance?
 - **b** Draw a circuit diagram to show how you would check your answer by measuring the resistances of the two pieces of wire.

Measuring resistance

The circuit shown in Figure 18.8 can be used to find the resistance of a resistor. However, the circuit would only provide a single value each for the p.d. *V* and the current *I*. A better technique is shown in Figure 18.10. In place of the cell is a power supply, which can be adjusted to give several different

Figure 18.10 A circuit for investigating how the current through a resistor changes as the voltage across it varies. The power supply can be adjusted to give a range of values of p.d. (typically from OV to 12V). For each value of p.d., the current is recorded.

values of p.d. For each value, the current is measured, and results like those shown in Table **18.2** are found. The last column in the table shows values for R calculated using $R = \frac{V}{I}$. These can be averaged to find the value of R.

Study tip

Remember that the current must flow through the ammeter, so the ammeter must be in series in the circuit.

P.d. <i>V</i> / V	Current / / A	Resistance <i>R</i> / Ω
2.0	0.08	25.0
4.0	0.17	23.5
6.0	0.24	25.0
8.0	0.31	25.8
10.0	0.40	25.0
12.0	0.49	24.5

Table 18.2 Typical results for an experimental measurement of resistance. The values of resistance are calculated using $R = \frac{V}{I}$.

Activity 18.2 Measuring resistance

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

A03.4 Interpret and evaluate experimental observations and data

Carry out some experiments to measure the resistance of some different electrical components.

- 1 Set up the circuit shown in Figure 18.10, including a resistor.
- 2 Set the output of the power supply to 2 V.
- 3 Measure and record the p.d. across the resistor and the current through it.
- 4 Calculate the resistance of the resistor. (It may help to record your results in a table similar to Table 18.2.)
- 5 Repeat the process with the other resistors.
- 6 Connect the lamp in place of the resistor. Set the supply so that the p.d. across the lamp is 2.0 V. Measure the current and calculate the resistance.
- 7 Repeat for several different p.d.s (making sure that you do not exceed the maximum operating voltage of the lamp). How does the resistance of the lamp change as it gets brighter?

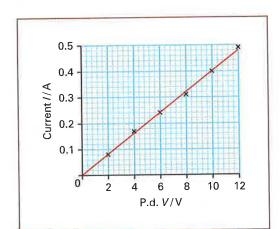
18.3 More about electrical resistance

The equation $R = \frac{V}{I}$ is used to calculate the resistance of a component in a circuit. We can rearrange the equation in two ways so that we can calculate current or p.d.:

$$I = \frac{V}{R}$$
$$V = IR$$

So, for example, we can calculate the current that flows through a $20\,\Omega$ resistor when there is a p.d. of $6.0\,\mathrm{V}$ across it. The current I is:

$$I = \frac{6.0 \,\text{V}}{20 \,\Omega} = 0.30 \,\text{A}$$


Questions

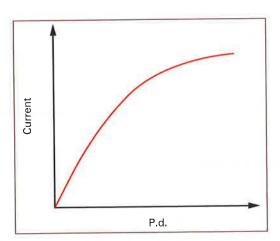
- **18.14** What p.d. is needed to make a current of 1.0 A flow through a 20Ω resistor?
- **18.15 a** What is the resistance of a resistor if a p.d. of 20 V across it causes a current of 2.0 A to flow through it?
 - **b** What p.d. would cause a current of 3.0 A to flow through the resistor?
- **18.16** What current flows when a p.d. of $14.5 \, V$ is connected across a $1000 \, \Omega$ resistor?

Current-voltage characteristics

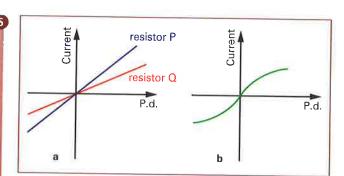
We can use the data shown in Table 18.2 to plot a graph of current against voltage for a resistor. This graph is shown in Figure 18.11 and is known as a current-voltage characteristic.

- ◆ The p.d. *V* is on the *x*-axis, because this is the quantity we vary.
- ◆ The current *I* is on the *y*-axis, because this is the quantity that varies as we change *V*.

Figure 18.11 The current–voltage characteristic for an ohmic resistor, drawn using the data in Table **18.2**. For this resistor, current is proportional to voltage.


In this case, the graph is a straight line that passes through the origin. This is what we expect because the equation $I = \frac{V}{R}$ shows that the current I is proportional to the p.d. V.

A resistor whose current–voltage characteristic is like this is called an **ohmic resistor**. It is easy to predict the current that will flow through an ohmic resistor because the current is directly proportional to the p.d. across it. Double the voltage gives double the current, and so on.


Figure 18.12 shows what happens if we use a filament lamp instead of an ohmic resistor. You can see that the current-voltage characteristic for the filament lamp is curved. (This may not surprise you if you have carried out step 6 of Activity 18.2.)

- At first, for low voltages, the graph is straight, showing that the current increases at a steady rate as the voltage is increased.
- ◆ At higher voltages, the graph starts to curve over. The current increases more and more slowly as the voltage is increased. Current is not proportional to voltage.

The graph shows that the lamp is not an ohmic resistor. Why is this? At first, when the voltage and current are small, the lamp behaves like an ohmic resistor. However, as the voltage increases, the current causes the filament to heat up and glow brightly. At high temperatures, the filament has a higher resistance and so the current does not increase as rapidly as it would do if the filament had remained cool.

Figure 18.12 The current–voltage characteristic for a filament lamp. The graph is not a straight line through the origin, showing that the lamp is not an ohmic resistor.

Figure 18.13 Typical current–voltage characteristics: **a** for two ohmic resistors (P has lower resistance than Q); and **b** for a filament lamp.

Figure 18.13 shows the typical shapes of the current-voltage characteristics for ohmic resistors and for a filament lamp. In Figure 18.13a, resistor Q has a higher resistance than resistor P. We can tell this because the current flowing through Q is always less than the current through P, for any voltage.

Notice that these graphs show both positive and negative voltages. A negative current means one flowing in the opposite direction. This is achieved by connecting the voltage the other way round. The graphs are symmetrical, showing that, whichever way round the components are connected, the current will be the same for a given voltage.

Questions

- **18.17** Look at the graph shown in Figure 18.13a. How can you tell from the graph that the resistors are both ohmic?
- **18.18** Look at the graph shown in Figure 18.13b. How can you tell from the graph that the lamp's resistance increases as the p.d. across it increases?

Length and area

We have seen that the resistance of a wire depends on its length and its diameter. In fact, it is the cross-sectional area of the wire that matters.

- The resistance of a wire is proportional to its length.
- The resistance of a wire is inversely proportional to its cross-sectional area.

Suppose that we have a 4.0 m length of wire. Its resistance is $100\,\Omega$. What will be the resistance of a 2.0 m length of wire with twice the cross-sectional area? (Notice that making the wire shorter will reduce its resistance, and increasing its area will also reduce its resistance.)

Halving the length gives half the resistance = 50Ω . Doubling the area halves the resistance again = 25Ω .

Question •

- **18.19** A 1.0 m length of wire is found to have a resistance of 40Ω .
 - **a** What would be the resistance of a piece of the same wire of length 2.0 m?
 - **b** What would be the resistance of a 2.0 m wire with half the cross-sectional area, made of the same material?

18.4 Electricity and energy

We use electricity because it is a good way of transferring energy from place to place. In most places, if you switch on an electric heater, you are getting the benefit of the energy released as fuel is burned in a power station, which may be over 100 km away. Mains electricity is alternating current (a.c.).

When you plug in an appliance to the mains supply, you are connecting up to quite a high voltage – something like $110\,\mathrm{V}$ or $230\,\mathrm{V}$, depending on where you live. This high voltage is the e.m.f. of the supply. Recall that e.m.f. is the name given to the p.d. across a component such as a cell or power supply that pushes current around a circuit.

What is a volt?

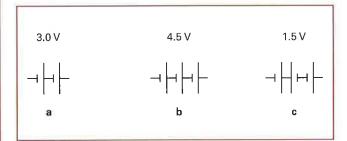
Why do we use high voltages for our mains supply? The reason is that a supply with a high e.m.f. gives a lot of energy to the charge that it pushes around the circuit. A 230 V mains supply gives 230 J of energy to each coulomb of charge that travels round the circuit.

This gives us a clue to what we mean by a volt. A supply with an e.m.f. of 1 volt gives 1 joule of energy to each coulomb of charge it pushes round a circuit. In other words, a volt is a joule per coulomb, as shown.

Key definition

volt (V) – the SI unit of potential difference, equal to one joule per coulomb (1 V = 1 J/C).

Batteries and power supplies give energy to the charges in a circuit. Similarly, we can think about other components in a circuit. For example, a small lamp may have a p.d. of 1.5 V across it. This means that each coulomb of charge passing through the lamp will transfer 1.5 J of energy to the lamp.


Combining e.m.f.s

Many battery-operated electrical appliances need more than one battery to make them work. For example, a radio may need four 1.5 V cells. Each has an e.m.f. of 1.5 V and, when connected together in series, they give a combined e.m.f. of 6 V. You can see that, when cells are connected in series, their e.m.f.s add up.

Figure 18.14 shows some examples of this. In general, if cells with e.m.f.s E_1 and E_2 are connected in series, their combined e.m.f. E is given by:

$$E = E_1 + E_2$$

You can understand why e.m.f.s add up like this by thinking about what happens when electric charge passes through. For four 1.5 V cells in series, each coulomb of charge gains 1.5 J of energy as it passes through the first cell. It gains another 1.5 J of energy when it passes through the second cell, and so on. It gains a total of 6 J of energy from the four cells, so their combined e.m.f. must be 6 V.

Figure 18.14 The e.m.f.s of cells or other supplies add up when they are connected in series. Here, each individual cell has an e.m.f. of 1.5 V: **a**, **b** More cells give a higher combined e.m.f. **c** If one cell is connected 'the wrong way round', the combined e.m.f. will be reduced.

Questions

- **18.20** A car battery has an e.m.f. of 12 V. How much energy does it transfer to 1 C of charge flowing round the circuit?
- **18.21** Three 12 V batteries are connected in series.
 - **a** Draw a diagram to show how these batteries could be connected to a lamp.
 - **b** Calculate the combined e.m.f. of the batteries.
 - **c** How much energy do the batteries transfer to 1 C of charge flowing round the circuit?

Electrical power

Most electrical appliances have a label that shows their power rating. An example is shown in Figure 18.15. Power ratings are indicated in watts (W) or kilowatts (kW). The power rating of an appliance shows the rate at which it transforms energy, and indicates the maximum **power** the appliance draws from the mains supply when it is operating at full power.

Power is the rate at which energy is transferred (from place to place) or transformed (from one form to another):

power (W) =
$$\frac{\text{energy transformed (J)}}{\text{time taken (s)}}$$

 $P = \frac{E}{t}$

Figure 18.15 This label is fixed to the back of a microwave oven.

The symbol *E* represents energy transferred or transformed. If you have studied Chapter 8, you will recognise this definition of power. It applies to all energy transfers and transformations, not just electrical ones.

This equation also reminds us of the definition of the unit of power, the watt:

one watt is one joule per second 1 W = 1 J/s

Voltage and energy

We have seen that the e.m.f. (voltage) of a supply tells us about how much energy it transfers to charges flowing around the circuit. The greater the current flowing around the circuit, the faster that energy is transferred. Hence the rate at which energy is transferred in the circuit (the power *P*) depends on both the e.m.f. *V* of the supply and the current *I* that it pushes round the circuit. The following equation shows how to calculate the power:

power (W) = current (A)
$$\times$$
 p.d. (V)
 $P = IV$

You may prefer to remember this as an equation relating units:

watts = $amps \times volts$

Study tip

You may find it easier to remember an equation in terms of units rather than quantities.

Calculating energy

Since energy transformed = power × time, we can modify the equation P = IV to give an equation for energy transformed E:

energy transformed (J)
= current (A) × p.d. (V) × time (s)
$$E = IVt$$

Worked example 18.3

An electric fan runs from the 230 V mains. The current flowing through it is 0.40 A. At what rate is electrical energy transformed by the fan? How much energy is transformed in one minute?

Step 1: First, we have to calculate the rate at which electrical energy is transformed. This is the power, *P*. Write down what you know and what you want to know.

V = 230 V I = 0.40 AP = ?

Step 2: Write down the equation for power, which involves *V* and *I*, substitute values and solve.

$$P = IV$$

 $P = 0.40 \text{ A} \times 230 \text{ V} = 92 \text{ W}$

Step 3: To calculate the energy transformed in 1 minute, use E = Pt (or E = IVt). Recall that time t must be in seconds.

$$E = 92 \text{ W} \times 60 \text{ s} = 5520 \text{ J}$$

So the fan's power is 92 W, and it transforms 5520 J of energy each minute.

Activity 18.3 Using electrical power

101

Determine the power of some electrical components.

Questions

- **18.22** Write down an equation linking watts, volts and amps.
- **18.23** A 10 V power supply pushes a current of 5.0 A through a resistor. At what rate is energy transferred to the resistor?
- **18.24** A tropical fish tank is fitted with an electric heater, which has a power rating of 30 W.
- The heater is connected to a 12 V supply. What current flows through the heater when it is switched on?
- 18.25 How much energy is transformed by an electric lamp in 100 s if a current of 0.22 A flows through it when it is connected to a 120 V supply?

Summary

You should know:

- about current, voltage and resistance in electric circuits
- how to measure current and voltage
- the difference between conventional current and electron flow
- about energy and power in electric circuits.

End-of-chapter questions

- 1 Copy and complete the sentences below, choosing the correct word from each pair.
 - a An electric current is a flow of charge / energy around a circuit.
 - **b** Current flows from *positive | negative* to *positive | negative*.
- 2 Copy and complete the sentences below, filling the gaps with suitable words.
 - a The current through a resistor is measured using an connected in
 - **b** The voltage across a resistor is measured using a connected in
- **a** Draw a circuit diagram to show how a voltmeter and an ammeter are used to measure the resistance of a lamp.
 - **b** Write the equation relating voltage, current and resistance that you would use to calculate the resistance of the lamp.
- 4 Copy and complete the table to show the units and their symbols for each of the quantities shown.

	Unit	Symbol for unit
Potential difference		
Current		
Resistance		

- 5 Copy and complete the sentences below, choosing the correct word from each pair.
 - a Conventional current is the flow of positive / negative charge / energy.
 - **b** In metals, electrons flow from *positive | negative* to *positive | negative*.
- 6 Copy and complete the table below (leave plenty of space!). The first column shows a symbol equation relating quantities. In the second column, write the same equation in words to show the names of the quantities. In the third column, write the same equation in units.

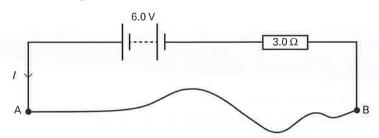
Equation	In words	In units	
Q = It			
$R = \frac{V}{I}$			
P = IV			
E = IVt			

- 7 a Draw a circuit to show how a cell can be connected to a switch and a lamp, so that the lamp lights up when the switch is closed. Label the components in your circuit.
 - b Add arrows to your circuit to show the direction in which electric current flows in the circuit. [2]
 - c Name the device you would use to measure the e.m.f. of the cell. [1]
 - d What unit is e.m.f. measured in?
- **8** To determine the resistance *R* of a resistor, an ammeter and a voltmeter can be used.
 - a Draw a circuit diagram to show how you would use these instruments, together with a variable power supply, to determine *R*.
 - b What quantity does the ammeter measure? [5]
 - c What quantity does the voltmeter measure? [1]
 d If the voltmeter gave a reading of 6.5 V and the ammeter gave a reading of 1.25 A, what would be
 - d If the voltmeter gave a reading of 6.5 V and the ammeter gave a reading of 1.25 A, what would be the value of *R*? [3]
- 9 Electrical appliances are used to transform electrical energy into other, more useful, forms of energy.
 - a Into what useful form of energy does a filament lamp transform electrical energy?
 b Into what other, less useful, form is electrical energy transformed by the lamp?
 [1]
 - b Into what other, less useful, form is electrical energy transformed by the lamp?
 c A lamp is labelled '12 V, 36 W'. This indicates that it should be used with a 12 V supply. What other
 - information does the label provide? [1]

 d How much electrical energy does the lamp transform in 1 minute? [3]
 - e The lamp is connected to a 12 V supply. Use the relationship P = IV to calculate the current that flows through it.
- 10 An electric heater is connected to a 10 V supply.
 - a In 20 s, 30 C of electric charge flows through the heater. Calculate the current flowing. [3]

[4]

b Calculate the energy transferred by the heater in 20 s.

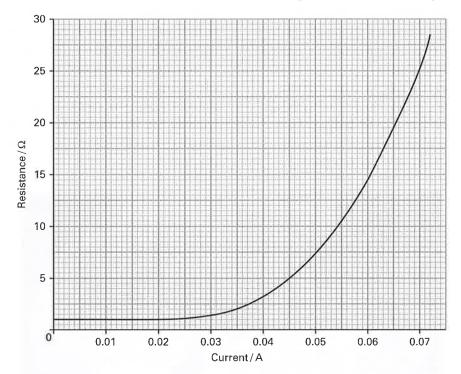

- Draw a diagram of the circuit that you would use to determine the resistance of a coil of 11 a i wire using a voltmeter and an ammeter. Use conventional symbols and label the coil clearly.
- [3]

State the equation you would use to calculate the resistance of the coil.

[1]

iii State two properties of the wire on which the resistance of the coil depends.

- [2]
- In the diagram, AB is a 2.0 m length of uniform resistance wire, connected into a circuit. Ignore the resistance of the battery.



The current *I* is 1.5 A. Calculate the resistance per metre of the resistance wire in Ω/m .

[4]

[Cambridge IGCSE® Physics 0625/22, Question 9, October/November, 2010]

12 The graph shows how the resistance of the filament of a lamp changes as the current through the lamp changes.

Describe how the resistance of the lamp changes.

[2]

For a current of 0.070 A, find:

i the resistance of the lamp the potential difference across the lamp [1]

[2]

iii the power being dissipated by the lamp.

- [2]
- Two of these lamps are connected in parallel to a cell. The current in each lamp is 0.070 A.
 - State the value of the e.m.f. of the cell.

[1]

Calculate the resistance of the circuit, assuming the cell has no resistance. ii

[2]

[Cambridge IGCSE® Physics 0625/33, Question 7, October/November, 2010]

19 Electric circuits

In this chapter, you will find out:

- how to construct and interpret circuit diagrams
- how to predict currents and voltages in series and parallel circuits
- S → how to predict the effects of logic gates
 - how to describe and explain electrical safety measures.

An international language

The technicians in the photograph (Figure 19.1) are checking the quality of some circuit boards. These boards carry many electrical components connected together in complex circuits.

Circuits like these are used in many different applications – in cars, radios, computers, washing machines and so on. They may be designed by electronic engineers in one country, constructed in another country, and put to use in a third

country. Everyone involved in the process must understand what is required. That is why we have an internationally agreed set of circuit symbols to represent the different components used in circuits.

You should already have used circuits containing cells, lamps, resistors, switches, ammeters and voltmeters, and you should be familiar with their symbols. You will learn about other electrical components and their symbols in this and later chapters.

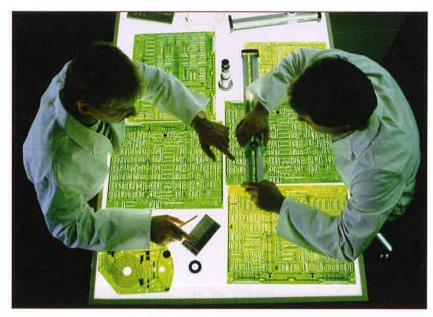
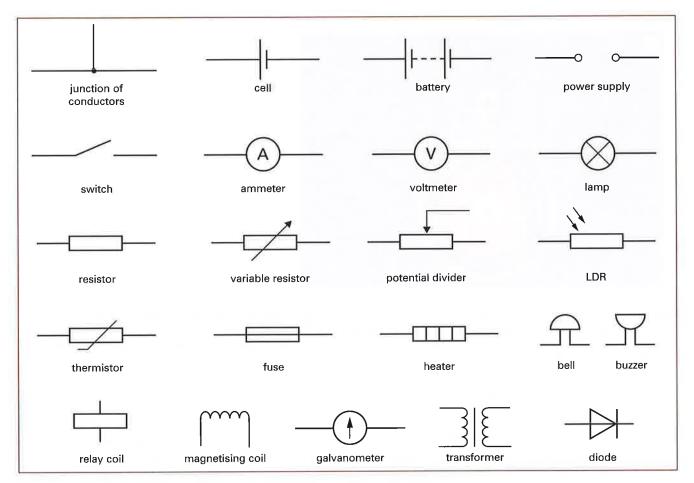
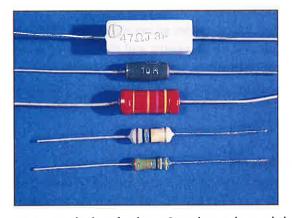


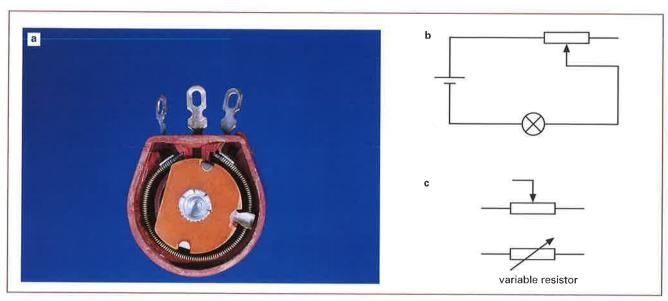
Figure 19.1 Checking circuit boards. The boards are placed on a light box or light table and technicians use magnifiers to see the fine detail.




Figure 19.2 Circuit symbols for electrical components.

19.1 Circuit components

Figure 19.2 shows the circuit symbols for the electrical components that you are most likely to meet in this course. You should try to remember them. A complete list is given in Appendix 2 at the end of the book.


Resistors

A **resistor** (Figure 19.3) can be used to control the amount of current flowing around a circuit. A resistor has two terminals, so that the current can flow in one end and out the other. They may be made from metal wire (usually an alloy – a mixture of two or more metals with a high resistance) or from carbon. Carbon (like the graphite 'lead' in a pencil) conducts electricity, but not as well as most metals. Hence high-resistance resistors tend to be made from graphite, particularly as it has a very high melting point.

Figure 19.3 A selection of resistors. Some have colour-coded stripes to indicate their value, and others use a number code.

A **variable resistor** (sometimes called a *potentiometer*) can be used to alter the current flowing in a circuit. Figure **19.4a** shows the inside of a variable resistor – notice that it has three terminals. As the

Figure 19.4 a A variable resistor. The resistance is provided by a 'track' of resistive wire or carbon. The resistance in the circuit depends on the position of the sliding contact. **b** The current flowing around this circuit depends on the position of the slider on the variable resistor. Imagine sliding the arrow to the right. The current will then have to flow through more resistance, and so it will decrease. **c** Symbols for a variable resistor.

control is turned, the contact slides over the resistive track. The current enters at one end and flows through the track until it reaches the contact, where it leaves the resistor. The amount of track that it flows through depends on the position of the contact. Variable resistors like this are often used for the volume control of a radio or stereo system. (You may have come across a *rheostat*, which is a lab version of a variable resistor.)

Figure 19.4b shows an example of a circuit that contains a variable resistor, and Figure 19.4c shows two different circuit symbols for a variable resistor. Note that the upper symbol has three terminals (like the resistor itself), but this circuit only makes use of two of them.

Transducers

We use many different electric circuits to make things happen automatically. For example, if the temperature falls, we may want a heater to come on automatically. If someone is moving around inside a bank at night, the burglar alarm must sound.

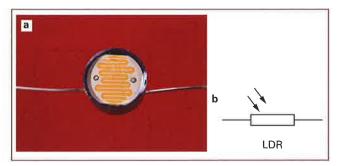
Electronic systems like these depend on devices described as **transducers**. A system might be represented like this:

input transducer \rightarrow circuit \rightarrow output transducer

An *input transducer* responds to a change in the environment (for example, a change in light or temperature) and produces a voltage. The electrical *circuit* to which the input transducer is connected then provides the voltage needed to operate the *output transducer*.

For a burglar alarm system, the input transducer might be a light sensor, and the output transducer could be a bell or flashing light:

light sensor \rightarrow circuit \rightarrow bell


We will now look at some devices that can act as input transducers.

Study tip

An input transducer is any device whose electrical properties change when its environment changes. For example, the resistance of a resistor increases when it gets hotter.

Light-dependent resistors

A **light-dependent resistor** (**LDR**) is a type of 'variable resistor' whose resistance depends on the amount of light falling on it (Figure 19.5). An LDR is made of a material that does not normally conduct well. In the

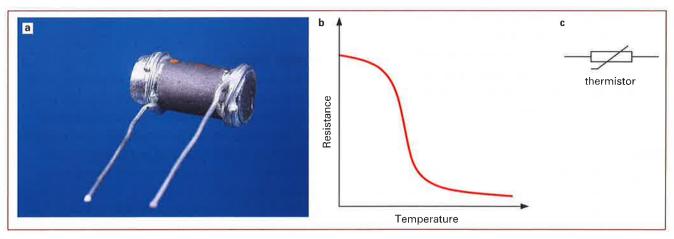
Figure 19.5 a A light-dependent resistor. The interlocking silver 'fingers' are the two terminals through which the current enters and leaves the resistor. In between (yellow-coloured) is the resistive material. **b** In the circuit symbol, the arrows represent light shining on the LDR.

dark, an LDR has a high resistance, often over $1\,\mathrm{M}\Omega$. However, light can provide the energy needed to allow a current to flow. Shine light on an LDR and its resistance decreases. In bright light, its resistance may fall to $400\,\Omega$.

LDRs are used in circuits to detect the level of light, for example in security lights that switch on automatically at night. Some digital clocks have one fitted. When the room is brightly lit, the display is automatically brightened so that it can be seen against its bright surroundings. In a darkened room, the display need only be dim.

Thermistors

A **thermistor** (Figure **19.6**) is another type of resistor whose resistance depends on its environment. In this


case, its resistance depends on its temperature. The resistance changes by a large amount over a narrow range of temperatures.

For some thermistors, the resistance decreases as they are heated – perhaps from $2\,k\Omega$ at room temperature to $20\,\Omega$ at $100\,^{\circ}$ C. These thermistors are thus useful for temperature probes – see the discussion of thermometers in section 10.1.

For other thermistors, the resistance *increases* over a similar temperature range. These are included in circuits where you want to prevent over-heating. If the current flowing is large, components may burn out. With a thermistor in the circuit, the resistance increases as the temperature rises, and the high current is reduced.

Questions

- **19.1 a** Draw the circuit symbol for a resistor.
 - **b** Draw the circuit symbol for a variable resistor.
- **19.2 a** What does LDR stand for?
 - **b** Draw its circuit symbol.
 - **c** What happens to the resistance of an LDR when light is shone on it?
- **19.3 a** Draw the circuit symbol for a thermistor.
 - **b** Give one use for a thermistor.
 - **c** Explain why a thermistor is suitable for this use.

Figure 19.6 a A thermistor. **b** The resistance of a thermistor depends on the temperature. In this case, in the middle of the curve, its resistance drops a lot as the temperature increases by a small amount. **c** In the circuit symbol, the line through the resistor indicates that its resistance is not fixed but depends on an external factor (in this case, the temperature).

Activity 19.1 Investigating resistive components

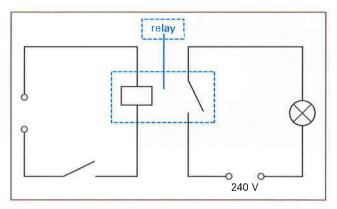
Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

A03.2 Plan experiments and investigations

AO3.3 Make and record observations, measurements and estimates

AO3.4 Interpret and evaluate experimental observations and data


Find out more about thermistors and light-dependent resistors.

- 1 Design a circuit to measure the resistance of a thermistor. Check your design with your teacher before setting up your circuit.
- **2** Make measurements that will allow you to determine the thermistor's resistance at room temperature.
- 3 Wrap your thermistor and its connecting wires in a plastic bag, so that it will not come into contact with the water in the water bath. Determine the resistance of the thermistor at different temperatures. Record your results in a table.
- 4 Draw a graph to show how the thermistor's resistance depends on the temperature.
- 5 Connect an LDR in place of the resistor. Vary the brightness of the light falling on it. Observe how the current flowing through it varies.
- 6 You can use a light meter to determine the intensity of the light falling on the LDR. Place the light meter immediately next to the LDR. Design a method to vary the light level. Record your results in a table. Draw a graph to show how the resistance of the LDR depends on the intensity of the light.

Relays

A **relay** is a type of switch that works using an electromagnet. Figure **19.7** shows that, when a relay is used, there are *two* circuits:

- the electromagnet coil of the relay (represented by a rectangle) is in one circuit
- the switch is in the other circuit.

Figure 19.7 A relay is used to link two circuits together. The relay is composed of a coil and a switch (shown in the blue dashed box).

When a current flows through the relay coil in the first circuit, it becomes magnetised. It pulls on the switch in the second circuit, causing it to close, and allowing a current to flow in the second circuit.

The second circuit often involves a large voltage, which would be dangerous for an operator to switch, or which could not be switched by a normal electronic circuit (because these work at low voltage).


Study tip

Remember: when a relay is used, there are two complete circuits.

Sensing circuits

A relay can be used in a circuit that senses changes in temperature or light level. Figure 19.8 shows a circuit that will set off a loud alarm when the temperature rises. This would be useful, for example, in an industrial freezer. If the freezer fails, a large quantity of frozen food could be ruined. Here is how the circuit in Figure 19.8 works:

◆ When the temperature is low, the thermistor has a high resistance. The current in the left-hand circuit is small, so the relay remains open. There is no current in the right-hand circuit.

Figure 19.8 An alarm circuit that uses a relay. The thermistor in the left-hand section senses the changing temperature and triggers the alarm bell in the right-hand section when the temperature rises.

 When the temperature rises, the resistance of the thermistor decreases. The current through the relay coil increases, pulling the relay switch closed. Now a current flows in the right-hand circuit and this makes the bell ring.

This circuit could be adapted to detect changes in light level. For example, the lights in a museum are switched off at night. A thief might use a torch and this could be detected using a light-dependent resistor in place of the thermistor.

Question

- **19.4 a** Redraw the circuit shown in Figure 19.8. Include a light-dependent resistor in place of the thermistor.
 - **b** Explain why the bell would be silent when the LDR is in darkness.
 - **c** Explain why the bell would ring when light shines on the LDR.

Diodes

A **diode** is a component that allows electric current to flow in one direction only. Its circuit symbol (Figure 19.9a) represents this by showing an arrow to indicate the direction in which current can flow. The bar shows that current is stopped if it tries to flow in the opposite direction. It can help to think of a diode as being a 'waterfall' in the circuit (Figure 19.9b). Charge can flow over the waterfall, but it cannot flow in the opposite direction, which would be uphill. Some diodes give out light when a current flows

through them (Figure 19.9c). A diode that does this is called a **light-emitting diode (LED)**. Again, it can help to think of the waterfall. As the charge flows over the waterfall, some of the energy it loses is given out as light.

Diodes are useful for converting alternating current (which varies back and forth) into direct current (which flows in one direction only). This process is known as rectification and the diode acts as a **rectifier**. Rectification is necessary, for example, in a radio that operates from the mains supply. Mains electricity is alternating current (a.c.) but the radio works using direct current (d.c.).

Light-emitting diodes are familiar in many pieces of electronic equipment. For example, they are used as the small indicator lights that show whether a stereo system or television is on. Modern traffic lights often use arrays of bright, energy-efficient LEDs in place of filament bulbs. These LED arrays use very little power, so they are much cheaper to run than traditional traffic lights. Also, they require little maintenance, because, if one LED fails, the remainder still emit light.

Study tip

Remember that the arrow in the diode symbol shows the direction in which conventional current can flow through the diode.

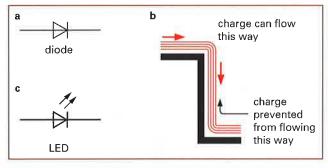
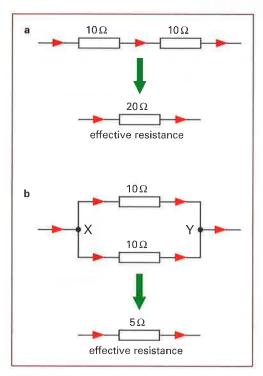


Figure 19.9 a Circuit symbol for a diode. A diode allows current to flow in one direction only – in the direction of the arrow. b A diode is rather like a waterfall. Charge can flow downhill, but is prevented from flowing back uphill. c Circuit symbol for a light-emitting diode. The arrows represent the light that is emitted when a current flows through it.


19.2 Combinations of resistors

If you have two resistors, there are two ways they can be connected together in a circuit: in series and in parallel. This is illustrated for two $10\,\Omega$ resistors in Figure 19.10. It is useful to be able to work out the total resistance of two resistors like this. What is their combined resistance or effective resistance?

- a For the two $10\,\Omega$ resistors in series. The current has to flow through two resistors instead of one. The resistance in the circuit is doubled, so the combined resistance is $20\,\Omega$.
- **b** For the two 10Ω resistors in parallel. There are two possible paths for the current to flow along, instead of just one. The resistance in the circuit is halved, so the effective resistance is 5Ω .

(We have not really *proved* these values for the combined or effective resistance, but you should see that they are reasonable values.)

To recognise when two resistors are connected in series, trace the path of the current around the circuit. If all the current flows through one resistor and then through the other (as in Figure 19.10a), the resistors are connected in series. They are connected end-to-end. For resistors in parallel, the current flows differently.

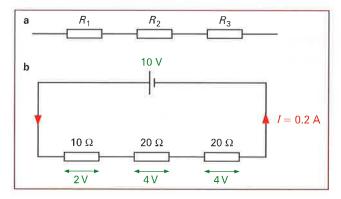
Figure 19.10 Two ways of connecting two resistors in a circuit: **a** in series and **b** in parallel.

It flows around the circuit until it reaches a point where the circuit divides (as at point X in Figure 19.10b). Then some of the current flows through one resistor, and some flows through the other. Then the two currents recombine (as at point Y in Figure 19.10b) and return to the cell. Resistors in parallel are connected side-by-side.

Resistors in series

If several resistors are connected in series, then the current must flow through them all, one after another. The combined resistance *R* in the circuit is simply the sum of all the separate resistances. For three resistors in series (Figure 19.11a), the formula for their combined resistance is:

$$R = R_1 + R_2 + R_3$$


Figure **19.11b** shows the same current *I* flowing through three resistors – remember, current cannot be used up. We can calculate the combined resistance for this circuit:

combined resistance =
$$10 \Omega + 20 \Omega + 20 \Omega = 50 \Omega$$

So the three resistors could be replaced by a single $50\,\Omega$ resistor and the current in the circuit would be the same.

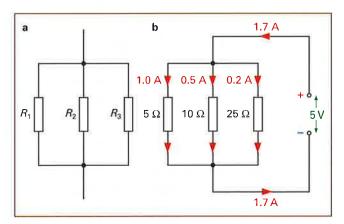
So, for resistors in series:

- the combined resistance is equal to the sum of the resistances
- the current is the same at all points around the circuit.

Figure 19.11 a Three resistors connected in series. **b** Values of current and p.d. in a series circuit. The same current *I* flows through each of the three resistors.

Resistors in parallel

The lights in a conventional house are connected in parallel with one another. The reason for this is that each one requires the full voltage of the mains supply to work properly. If they were connected in series, the p.d. would be shared between them and they would be dim. In parallel, each one can be provided with its own switch, so that it can be operated separately. If one bulb fails, the others remain lit.


The effective resistance of several resistors connected in parallel is less than that of any of the individual resistors. This is because it is easier for the current to flow. You can see this for three resistors in parallel in Figure 19.12a. The current flowing from the source divides up as it passes through the resistors. Figure 19.12b shows the current from the power supply splitting up and passing through three resistors in parallel.

So, for two resistors in parallel:

- the effective resistance is less than the resistance of either resistor
- the current from the source is greater than the current through either resistor.

Potential-divider circuits

Often, a power supply or a battery provides a fixed potential difference. To obtain a smaller p.d., or a variable p.d., this fixed p.d. must be split up using a

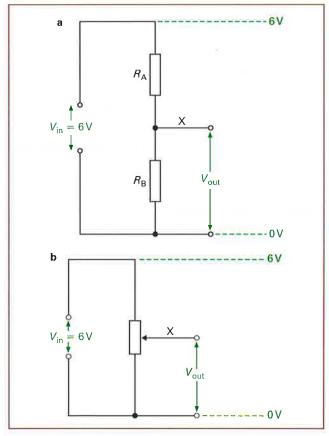


Figure 19.12 a Three resistors connected in parallel. **b** Values of current and p.d. in a parallel circuit. The current flowing from the supply is shared between the resistors.

circuit called a **potential divider**. Figure **19.13** shows two forms of potential divider.

In the circuit shown in Figure 19.13a, two resistors R_A and R_B are connected in series across the 6 V power supply. The p.d. across the pair is thus 6 V. (It helps to think of the bottom line as representing 0 V and the top line as 6 V.) The p.d. at point X, between the two resistors, will be part-way between 0 V and 6 V, depending on the values of the resistors. If the resistors are equal, the p.d. at X will be 3 V. The p.d. of the supply will have been divided in half – hence the name potential divider.

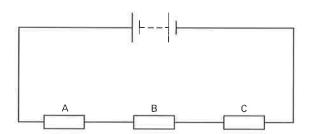

To produce a variable output, we replace the two resistors with a variable resistor, as shown in Figure 19.13b. By altering the resistance of the variable resistor, the voltage at X can have any value between 0 V and 6 V.

Figure 19.13 a A simple potential-divider circuit. The output voltage is a fraction of the input voltage. The input voltage is divided according to the relative values of the two resistors. **b** A variable resistor is used to create a potential-divider circuit, which gives an output voltage that can be varied.

Questions

- **19.5** What is the combined resistance of two 20Ω resistors connected in series?
- **19.6** Three resistors are connected in series with a battery, as shown.

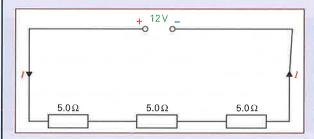
Resistor A has the greatest resistance of the three. The current through A is 1.4 A. What can you say about the currents through B and C?

- **19.7** What is the combined resistance of three 30Ω resistors connected in series?
- **19.8 a** Two resistors are to be connected to form a potential-divider circuit. Should they be connected in series or in parallel with each other?
 - **b** State briefly the function of a potential-divider circuit.

Voltage in series circuits

When resistors are connected in series with each other in a circuit with a power supply, there is a p.d. across each resistor. From the numerical example shown in Figure 19.11b, you can see that adding up the p.d.s across the three separate resistors gives the p.d. of the power supply. In other words, the p.d. of the supply is shared between the resistors. We can write this as an equation:

$$V = V_1 + V_2 + V_3$$


Festive lights, such as those used on Christmas trees, are often wired together in series. This is because each bulb works on a small voltage. If a single bulb was connected

to the mains supply, the p.d. across it would be too great. By connecting them in series, the mains voltage is shared out between them. The disadvantage of this is that, if one bulb fails (its filament breaks), they all go out because there is no longer a complete circuit for the current to flow around.

Worked example 19.1

Three $5.0\,\Omega$ resistors are connected in series with a 12 V power supply. Calculate their combined resistance, the current that flows in the circuit, and the p.d. across each resistor.

Step 1: Draw a circuit diagram and mark on it all the quantities you know. Add arrows to show how the current flows.

Step 2: Calculate the combined resistance.

$$R = R_1 + R_2 + R_3$$

 $R = 5.0 \Omega + 5.0 \Omega + 5.0 \Omega$
 $R = 15 \Omega$

Step 3: Calculate the current flowing. A p.d. of $12\,\mathrm{V}$ is pushing current through a resistor of $15\,\Omega$ total resistance. So:

current
$$I = \frac{V}{R} = \frac{12 \text{ V}}{15 \Omega} = 0.8 \text{ A}$$

Step 4: Calculate the p.d. across an individual $5.0\,\Omega$ resistor when a current of $0.8\,\mathrm{A}$ flows through it.

p.d.
$$V = IR = 0.8 \text{ A} \times 5 \Omega = 4.0 \text{ V}$$

Hence each resistor has a p.d. of 4.0 V across it. Note that the 12 V of the supply is shared out equally between the resistors, since each has the same resistance. We could have worked this out without knowing the current.

Current and resistance in parallel circuits

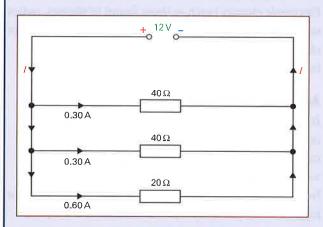
From Figure 19.12b, you can see that the current divides up to pass through the branches of a parallel circuit. Adding up the currents through the three separate resistors gives the current flowing out of the power supply.

In other words, the current from the supply is the sum of the currents flowing through the resistors:

$$I = I_1 + I_2 + I_3$$

Because the resistors are connected side by side, each feels the full push of the supply.

To calculate the effective resistance R for three resistors in parallel, we use this formula:


$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

There are two ways to calculate this type of sum: either use a calculator, or add up the fractions by finding their lowest common denominator. Worked example 19.2

Worked example 19.2

Two $40\,\Omega$ resistors and a $20\,\Omega$ resistor are all connected in parallel with a $12\,V$ power supply. Calculate their effective resistance, and the current through each. What current flows from the supply?

Step 1: Draw a circuit diagram and mark on it all the quantities you know (see Figure 19.15). Add arrows to show how the current flows.

Step 2: Calculate the effective resistance.

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$\frac{1}{R} = \frac{1}{40\Omega} + \frac{1}{40\Omega} + \frac{1}{20\Omega}$$

$$\frac{1}{R} = \frac{1}{40\Omega} + \frac{1}{40\Omega} + \frac{2}{40\Omega}$$

$$\frac{1}{R} = \frac{4}{40\Omega}$$

$$\frac{1}{R} = \frac{1}{10\Omega}$$

$$R = 10\Omega$$

So the three resistors together have an effective resistance of 10 Ω .

Step 3: Each resistor has a p.d. of 12 V across it. Now we can calculate the currents using the equation:

$$I = \frac{V}{R}$$

We get the following results for the currents:

$$\frac{\text{current through}}{20\,\Omega \text{ resistor}} = \frac{12\,\text{V}}{20\,\Omega} = 0.60\,\text{A}$$

current through
$$=\frac{12 \text{ V}}{40 \Omega} = 0.30 \text{ A}$$

These values have been marked on the diagram. Notice that, as you might expect, the smaller $(20\,\Omega)$ resistor has a bigger current flowing through it than the larger $(40\,\Omega)$ resistors.

Step 4: The current *I* flowing from the supply is the sum of the currents flowing through the individual resistors.

$$I = 0.6 \text{ A} + 0.3 \text{ A} + 0.3 \text{ A} = 1.2 \text{ A}$$

We could have reached the same result using the effective resistance (10 Ω) of the circuit that we found in Step 2:

$$I = \frac{12 \,\mathrm{V}}{10 \,\Omega} = 1.2 \,\mathrm{A}$$

This is a useful way to check that you have calculated the effective resistance correctly.

shows how to use this formula, and how to work out the sum by finding the lowest common denominator.

Study tip

Current divides in a parallel circuit, but the total amount must remain the same – electrons cannot just disappear.

Activity 19.2 Resistor combinations

Skills

- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- A03.2 Plan experiments and investigations
- A03.3 Make and record observations, measurements and estimates
- A03.4 Interpret and evaluate experimental observations and data

Connect up some combinations of resistors in series and in parallel. Measure their combined or effective resistances and compare them with calculated values.

- 1 Set up a circuit that will allow you to determine the resistance of a single resistor, or of two or more resistors.
- 2 Select four resistors with similar values of resistance. For each, make measurements to determine its resistance.
- 3 Connect two of the resistors in series. Calculate their combined resistance in series. Measure their combined resistance and compare it with your calculated value.
- 4 Repeat step 3 with other combinations of resistors (up to four) connected in series.
- 5 The effective resistance of two resistors in parallel is less than either of their individual resistances. Check this statement by measuring the effective resistance of two resistors in parallel.
- **6** If you know how to calculate the effective resistance of resistors in parallel, check whether your measured value is the same as the calculated value.

Questions

- **19.9** Use the idea of resistors in series to explain why a long wire has more resistance than a short wire (of the same thickness and material).
- **19.10** Use the idea of resistors in parallel to explain why a thick wire has less resistance than a thin wire (of the same length and material).
- **19.11** A $10.0\,\Omega$ resistor is connected in series with a $20.0\,\Omega$ resistor and a $15.0\,\mathrm{V}$ power supply.
 - **a** Calculate the current flowing around the circuit.
 - **b** Which resistor will have the larger share of the p.d. across it?
- **19.12** What will be the effective resistance of three 60Ω resistors connected together in parallel?
- **19.13** Two resistors of values 30 Ω and 60 Ω are connected in parallel. Calculate their effective resistance.

19.3 Electronic circuits

Electronic circuits (such as those found in phones, radios, mp3 players and television sets) make use of a number of other components to control the way that current flows in a circuit. In this section, we will look at logic gates.

Analogue and digital

In most of the circuits we have looked at so far, we could imagine choosing any value of voltage, for example, by changing a power supply or by altering a variable resistor. Many electronic circuits are different from this. They give an output voltage that can be either high (usually close to $6\,\mathrm{V}$) or low (close to $0\,\mathrm{V}$). (The relay circuits you studied above are like this – either the relay is open or closed, so the alarm bell rings or is silent – a relay cannot be half-way on.)

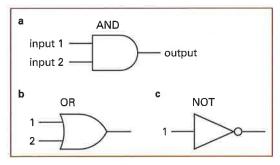
Circuits like this are described as *digital*. The output of the circuit is either ON or OFF – there is no inbetween state. Digital electronic systems are very useful for storing and transferring information. Computers, mobile phones and mp3 players all work digitally.

In digital systems, each piece of information (such as a number or a letter) is represented in binary form as a sequence of 1s (ones) and 0s (zeros). In a circuit, a 1 corresponds to a high voltage (perhaps $6\,\mathrm{V}$). A 0 corresponds to a low voltage (close to $0\,\mathrm{V}$).

The opposite of a digital system is an *analogue* system. In an analogue system, voltages can have any value, positive or negative.

Logic gates

Logic gates are digital electronic components that engineers use as simple building blocks when they design electronic circuits. Each logic gate has a specific function, and many can be combined together to produce complex effects. Inside each logic gate there are a number of different components, but we do not need to think about these – we need only think about what goes in to the logic gate and what comes out as a result.


A **logic gate** is a device that receives one or more electrical input signals, and produces an output signal that depends on those input signals. These signals are voltages:

- high voltage is referred to as ON, and is represented by the symbol 1
- a low voltage is referred to as OFF, and is represented by the symbol 0.

In order to do this, a logic gate needs its own power supply, but this is not usually shown when circuit diagrams are drawn. It is easiest to understand how logic gates operate by looking at three specific examples: the AND, OR and NOT gates, whose circuit symbols are shown in Figure 19.14. The first two symbols have two inputs on the left and a single output on the right. The third one has one input on the left and one output on the right.

- **a** An AND gate functions like this: its output is ON if both input 1 *and* input 2 are ON.
- **b** An OR gate functions like this: its output is ON if either input 1 *or* input 2 *or* both is ON.
- **c** A NOT gate functions like this: its output is ON if its input is *not* ON.

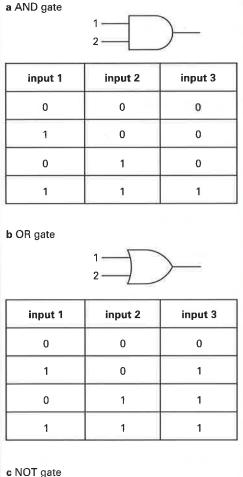

Let us look at a practical example. An OR gate might be useful in a heating system for the rooms in a house.

Figure 19.14 Circuit symbols for three logic gates: **a** AND, **b** OR and **c** NOT.

There might be temperature sensors in two rooms. If a room was cold, the sensor would send an ON signal to the OR gate. If either room was cold, the output of the gate would be ON, and this would switch on the heaters.

The way in which these three gates operates is clear from their names. Another way to remember how they operate is by learning their truth tables, shown in Figure 19.15. In a truth table, we use 0 and 1 to stand for OFF and ON.

c NOT gate	_	
	1—	· · · · · ·
input 1	output	
0	1	
1	0	

Figure 19.15 Truth tables for three logic gates: **a** AND, **b** OR and **c** NOT. In a truth table, 0 stands for OFF or a low voltage; and 1 stands for ON or a high voltage.

A **truth table** shows all the possible combinations of inputs, and the output that results from each combination. The NOT gate (Figure 19.15c) has only one input, which can be ON or OFF, so this is the simplest table. The AND gate (Figure 19.15a) and OR gate (Figure 19.15b) both have two inputs. So there are four possible combinations of inputs, and there is a corresponding output for each. For example, you can see from the last line in the truth table for the AND gate that two input 1s give an output 1. For all other combinations of inputs, the output is 0. You should check that you understand how these truth tables represent the same information as in the sentences above that describe these gates.

Combining logic gates

Computer chips (microprocessors) are made up of many millions of logic gates. They combine together to produce outputs that depend on many different inputs. We will restrict ourselves to some simple examples involving just a few gates, to illustrate the principles involved.

Figure 19.16a shows an AND gate with a NOT gate connected to its output. We can work out the truth table for this combination by realising that the output of the AND gate is the input of the NOT gate. When the AND gate output is 1, the NOT gate turns this into a 0.

Figure 19.16b shows the same gates but connected together differently, along with the resulting truth table. This shows that the order in which gates are connected together is important. By combining the same gates in different orders, we can achieve different effects.

Figure 19.17 shows a combination of three OR gates. Let us look at a practical example of how this might function. A building has smoke detectors in four different places. Their outputs are connected via this combination of OR gates to a single alarm siren. If any detector gives an ON signal, the siren will be switched on. This saves the expense of a separate siren for each detector.

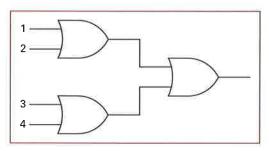

Two more logic gates

Figure 19.18 shows the symbols for two more logic gates, the NAND and NOR gates, each of which has two inputs and a single output. Their truth tables are also shown. From the truth tables, you should see that these gates can be described as follows.

a A NAND gate functions like this: its output is OFF if both input 1 *and* input 2 are ON.

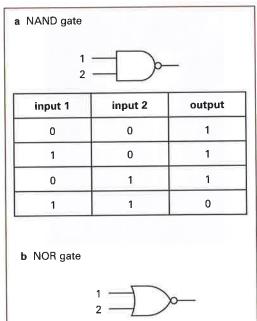

Figure 19.16 Two ways of combining a NOT gate with an AND gate, together with the resulting truth tables: **a** AND NOT and **b** NOT AND.

Figure 19.17 Three OR gates connected together. The combination has four inputs, so there are 16 different possible combinations of input signals. If one or more inputs is ON, the output is ON.

b A NOR gate functions like this: its output is ON if neither input 1 *nor* input 2 is ON.

You could construct a NAND gate by connecting a NOT gate to the output of an AND gate, so AND + NOT = NAND. Similarly, you could construct a NOR

input 1	input 2	output
0	0	1
1	0	0
0	1	0
1	1	0

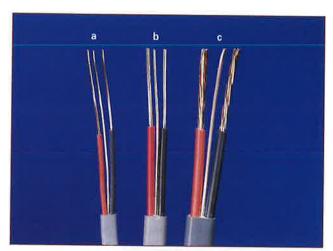
Figure 19.18 Symbols for **a** NAND gate and **b** NOR gate, together with their truth tables. The little circle on each symbol is like the circle on the NOT gate symbol.

gate by connecting a NOT gate to the output of an OR gate, so OR + NOT = NOR.

19.4 Electrical safety

Mains electricity is hazardous, because of the large voltages involved. If you come into contact with a bare wire at 230 V, you could get a fatal electric shock. Here, we will look at some aspects of the design of electrical systems and see how they can be used safely.

Electrical cables

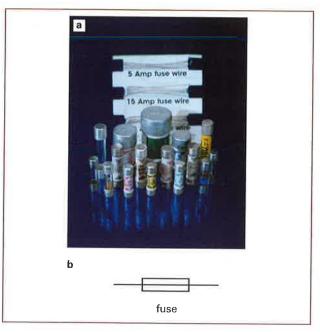

The cables that carry electric current around a house are carefully chosen. Figure 19.19 shows some examples. For each, there is a maximum current that it is designed to carry. A 5 A cable (Figure 19.19a) is

Questions

- **19.14** The output of a NOT gate is connected to the input of another NOT gate.
 - **a** Draw up a truth table for this arrangement.
 - **b** Write a sentence to describe its effect.
- 19.15 a Draw the symbol for a NOR gate.
 - **b** Draw a truth table to represent the operation of this gate.
 - **c** Write a sentence summarising its operation.
- **19.16** Look at the combination of gates shown in Figure **19.16b**, together with its truth table.
 - **a** Draw the same combination of gates, but with the NOT gate connected to the other input of the AND gate.
 - **b** Draw up the corresponding truth table for this new arrangement.
- **19.17** The outputs of two AND gates are connected to the inputs of a third AND gate.
 - **a** Using the correct symbols, show that arrangement of gates.
 - **b** When is the output of this third gate ON?
 - **c** Suggest a use for this combination of gates.

relatively thin. This might be used for a lighting circuit, since lights do not require much power, so the current flowing is relatively small. The wires in a 30 A cable (Figure 19.19c) are much thicker. This might be used for an electric cooker, which requires much bigger currents than a lighting circuit.

The wires in each cable are insulated from one another, and the whole cable has more protective insulation around the outside. If this insulation is damaged, there is a chance that the user will touch the bare wire and get an electric shock. There is also a chance that current will flow between two bare wires, or from one bare wire and any piece of metal it comes into contact with. Often, the metal case of an electrical appliance is **earthed** by connecting it to the earth wire to reduce the chances of a fatal electric shock.


Figure 19.19 Cables of different thicknesses are chosen according to the maximum current that they are likely to have flowing through them: **a** 5 A, **b** 15 A and **c** 30 A. Each cable has live, neutral and earth wires, which are colour coded. In these cables, the earth wire does not have its own insulation.

Another hazard can arise if an excessive current flows in the wires. They will heat up and the insulation may melt, causing it to emit poisonous fumes or even catch fire. Thus it is vital to avoid using appliances that draw too much current from the supply. Fuses help to prevent this from happening – see below.

When using electricity, it is important to avoid damp or wet conditions. Recall that water is an electrical conductor (see section 18.1). So, for example, if your hands are wet when you touch an electrical appliance, the water may provide a conductive path for current to flow from a live wire through you to earth. That could prove fatal.

Fuses

Fuses are included in circuits to stop excessive currents from flowing. If the current gets too high, cables can burn out and fires can start. A **fuse** contains a thin section of wire, designed to melt and break if the current gets above a certain value. Usually, fuses are contained in cartridges, which make it easy to replace them, but some fuses use fuse wire, as shown in Figure 19.20. The thicker the wire, the higher the current that is needed to make it 'blow'. A fuse represents a weak link in the electricity supply chain. Replacing a fuse is preferable to having to rewire a whole house.

Figure 19.20 a Cartridge fuses and fuse wire. The thicker the wire, the higher the current that causes it to blow. **b** The circuit symbol for a fuse.

It is important to choose a fuse of the correct value in order to protect an appliance. The current rating of the fuse should be just above the value of the current that flows when the appliance is operating normally (see Worked example 19.3).

Worked example 19.3

A 2kW heater works on a 230 V mains supply. The current flowing through it in normal use is 8.7 A. What current rating would a suitable fuse have? Choose from 3 A, 13 A and 30 A.

- **Step 1:** The 3 A fuse has a current rating that is too low, and it would blow as soon as the heater was switched on.
- Step 2: The 30 A fuse would not blow, but it is unsuitable because it would allow an excessive current (say, 20 A) to flow, which could cause the heater to overheat.
- **Step 3:** The 13 A fuse is the correct choice, because it has the lowest rating above the normal operating current.

Circuit breakers

There are two types of **circuit breaker** used in electrical safety – try not to confuse them. Both work using electromagnets, but we will not consider the detail of their construction here.

A **trip switch** can replace a fuse. When the current flowing through the trip switch exceeds a certain value, the switch 'trips', breaking the circuit. Some modern house wiring systems use trip switches instead of fuses in the fuse box (Figure 19.21). You have probably come across trip switches on lab power supplies. If too much current starts to flow, the supply itself might overheat and be damaged. The trip switch jumps out, and you may have to wait a short while before you can reset it.

A **residual-current device** (**RCD**) protects the user rather than an appliance or cable. In normal circumstances, the currents flowing in the live and neutral wires are the same, because they form part of a series circuit. However, suppose that there is a fault.

Figure 19.21 This is where the mains electricity supply enters a house. On the left is the meter. The white box contains a trip switch for each circuit in the house, together with an RCD, which protects the users of any circuit.

Someone cutting the lawn with an electric lawnmower has accidentally damaged the live wire, by running over the flex with the mower. Some current then flows through the user, rather than along the neutral wire. Now more current is flowing in the live wire than in the neutral. The RCD detects this and switches off the supply. Houses often have RCDs fitted next to the fuse box. School labs usually have one too, to protect students and teachers.

Study tip

Remember that, if someone is to get a shock, they have to be part of a circuit. Current may flow through them and down into the ground.

Activity 19.3 Electrical safety

Find out more about electrical hazards.

- **19.18** In normal use, a current of 3.5 A flows through a hairdryer. Choose a suitable fuse from the following: 3 A, 5 A, 13 A, 30 A. Explain your choice.
- **19.19 a** Why are fuses fitted in the fuse box of a domestic electricity supply?
 - **b** What device could be used in place of the fuses?
- **19.20** What hazards can arise when the current flowing in an electrical wire is too high?

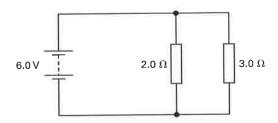
Summary

You should know:

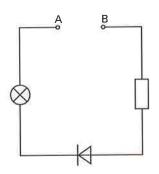
- how these circuit components behave light-dependent resistor, thermistor, relay
- ♦ how these circuit components behave diode, logic gates
 - the current, voltage and effective resistance of resistors in series
 - the current, voltage and effective resistance of resistors in parallel
- ♦ the formula for the effective resistance of resistors in parallel
 - about potential-divider circuits
- ♦ how logic gates are used in digital control circuits
 - about electrical safety devices: fuses and circuit breakers.

End-of-chapter questions

1 Copy the table and complete it by adding the names and symbols of the devices described.


Name of device	me of device Circuit symbol De	
		resistance decreases when light falls on it
		resistance changes when temperature changes
		an electromagnetic switch

- 2 Copy and complete the following sentences about resistors connected in series. Fill the gaps with suitable words.
 - a Resistors in series have the same in them.
 - **b** The effective resistance of resistors in series is the of their resistances.
- 3 Copy and complete the following sentences about resistors connected in parallel. Fill the gaps with suitable words.
 - a Resistors in parallel have the same across them.
 - **b** Current from the supply is between resistors in parallel.
 - c The effective resistance of resistors in series is than each of their individual resistances.
- 4 Copy and complete the following sentences about resistor combinations. Choose the correct word from each pair.
 - a When resistors are connected in series / parallel, the p.d. across the supply is shared between the resistors.
 - **b** When resistors are connected in *series / parallel*, the current from the supply is shared between the resistors.
 - c When resistors are connected in *series* / parallel, their effective resistance is given by $R = R_1 + R_2 + R_3$.
 - **d** When resistors are connected in *series / parallel*, their effective resistance is given by $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$.


- Draw the circuit symbols for the following logic gates. NOT AND iii OR iv NAND NOR **b** Write the truth table for each of these gates. A fuse can be used to protect an electrical circuit.
- a What problems may arise if a high current flows in a circuit? [1] **b** What happens in the fuse when a dangerously high current flows in the circuit? [1] c What other device could be used to protect a circuit instead of a fuse? [1] d Explain why a 13 A fuse is suitable for a circuit in which the greatest current is usually 10 A. [1] Draw the circuit symbol for each of the following electrical components. [4]a resistor **b** lamp c bell **d** fuse a Draw a circuit in which two resistors are connected in series with each other, and with a switch and a 6 V [4] **b** If the two resistors in part **a** have values of 10Ω and 40Ω , what will be their combined resistance? [2] c $\,$ If the current flowing from the supply is 0.12 A, what current will flow through the $10\,\Omega$ resistor? [1] **d** What current will flow back to the supply? [1] Name the following electrical components. a It stores energy in a circuit. [1] **b** Its resistance decreases when light shines on it. [1] c It acts as an electromagnetic switch. [1] 10 An electric circuit is designed to carry a current of 10 A. a What problem may arise if the current rises above this value? [1] **b** Name **two** devices that could be fitted into the circuit to protect the circuit if the current becomes dangerously high. [2] c If the circuit is required to carry a higher current, how should the wiring be changed? Explain your answer.

[3]

3 11 The circuit diagram shows an electric circuit in which current flows from a 6 V battery through two resistors.

- a Are the resistors connected in series or in parallel with each other?
- **b** For each resistor, state the p.d. across it. [2]
- c The current flowing from the battery is shared between the resistors. Which resistor will have a bigger share of the current? Explain your answer. [2]
- d Calculate the effective resistance of the two resistors, and the current that flows from the battery. [5]
- 12 The circuit diagram shows a circuit that includes a diode.

- a Copy the diagram and label the diode. [1]
- **b** On your diagram, between points A and B, add the symbol for a cell. The cell must be connected in such a way that a current flows through the resistor.
- c On your diagram, add a labelled arrow to show the direction in which electrons move through the resistor when the current flows.
- 13 Logic gates are often used in electronic control circuits. The operation of a logic gate can be represented by a truth table.
 - a What logic gate is represented by the truth table shown? Write a sentence to describe its operation.

Key: 0 = OFF

Key: 1 = ON

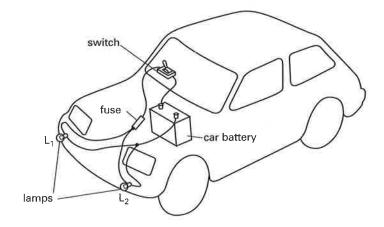
input 1	input 2	output
0	0	0
1	0	0
0	1	0
1	1	1

b The output of a gate called an 'exclusive OR' gate is ON if just one of its two inputs is ON. Otherwise, it is OFF. Draw a truth table to represent this.

[1]

[2]

c Name the two logic gates shown in the diagram.



d What will be the output of the combination of gates shown in the diagram if both inputs are ON?

[1]

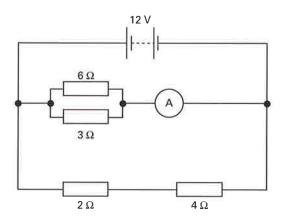
[2]

14 The diagram represents the circuit that operates two of the lamps on a car.

- [3] Draw the circuit diagram for this circuit, using conventional symbols.
- The car battery has an e.m.f. of 12 V and, when the lamps are switched on, there is a current of 1.6 A in each lamp. Calculate the resistance of one of the lamps. [4]

When the switch is turned on, both lamps should light up. On one occasion when the driver operates the switch, lamp L₂ fails to light up. Suggest a reason for this.

[1]


d An amateur workman connects a length of wire across lamp L₂ and shorts it out. When the switch is closed for the first time after this, what happens, if anything, to:

- the fuse i
- ii lamp L₁
- iii lamp L₂?

[3]

[Cambridge IGCSE® Physics 0625/23, Question 8, October/November, 2012]

15 The figure shows a circuit containing a 12 V power supply, some resistors and an ammeter whose resistance is so small that it may be ignored.

- a i Determine the potential difference across the 2Ω resistor. [1]
 - ii State the potential difference across the 3 Ω resistor.
- **b** Calculate the effective resistance of:
 - i the 2Ω and 4Ω resistors connected in series [1]
 - ii the 3 Ω and 6 Ω resistors connected in parallel. [2]
- c Calculate the reading on the ammeter. [2]
- d Without further calculation, state what happens, if anything, to the ammeter reading if:
 - i the 2Ω resistor is shorted out with a thick piece of wire
 - ii the thick piece of wire from \mathbf{d} i and the 3Ω resistor are both removed. [2]

[Cambridge IGCSE® Physics 0625/33, Question 7, October/November, 2011]

20

Electromagnetic forces

In this chapter, you will find out:

- how electromagnets are used
- about the magnetic force on a current-carrying conductor
- ♦ how Fleming's left-hand rule is used
- how beams of charged particles are affected by magnetic fields.

Electricity meets magnetism

There are two ways to produce a magnetic field – using a permanent magnet or an electromagnet (a coil of wire through which a current flows). The second of these shows there is a close connection between electricity and magnetism. This was discovered by Hans Christian Oersted, a Danish scientist, early in the 19th century. He noticed that both static electricity and magnetism showed similar patterns – attractive and repulsive forces, two types of charge or pole, a force that gets weaker at a distance, and so on. Most other scientists thought this was just an interesting coincidence, but Oersted thought there was more to it. He was sure he could find a link between electricity and magnetism – and he did!

In 1820, Oersted gave a lecture on electricity. He described a ship that had been struck by lightning. Its compass was affected, so that its north and south poles were reversed. Oersted was certain this proved the link between electricity and magnetism. Then a thought struck him – he could try an experiment there and then to test his idea. On his bench, he had a wire and a compass (Figure 20.1). He placed the compass under the wire. When his assistant connected the wire to a battery so that a current flowed through the wire, the compass needle moved. At the time, noone was very impressed – not even Oersted. But the more he thought about it, the more he realised that he

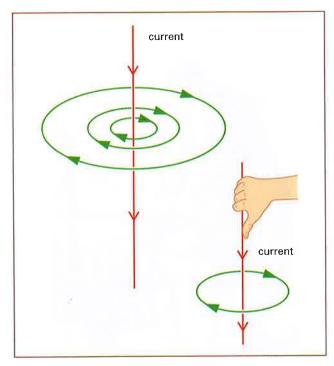
had observed something significant. The current in the wire was producing a magnetic effect, which was acting on the compass needle. By moving the compass around near the wire, he discovered that the magnetic effect showed a circular pattern around the current. The study of electromagnetism had begun.



Figure 20.1 Oersted and his assistant, holding the wires.

20.1 The magnetic effect of a current

In Chapter 16, we saw that an **electromagnet** can be made by passing a current through a coil of wire (a **solenoid**). The flow of current results in a magnetic field around the solenoid. The field is similar to the field around a bar magnet (see Figure 16.8 in section 16.2).


If you uncoil a solenoid, you will have a straight wire. With a current flowing through it, it will have a magnetic field around it as shown in Figure 20.2. The field lines are circles around the current.

Every electric current is surrounded by the magnetic field that it creates. An electromagnet is simply a clever way of making use of this, because winding the wire into a coil is a way of concentrating the magnetic field.

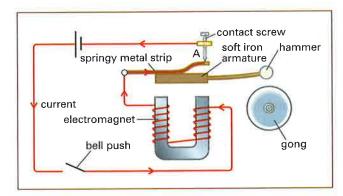
The **right-hand grip rule** tells you the direction of the field lines. Imagine screwing a corkscrew in the direction of the current. The direction you turn it in is the direction of the magnetic field lines.

Uses of electromagnets

Electromagnets are in use in many different places. An electric motor has at least one – electric motors are considered in detail in section **20.2**. Here are some other applications of electromagnets.

Figure 20.2 The magnetic field around a current in a straight wire. The field lines are circles around the wire. The further away from the wire, the weaker is the field. The corkscrew rule tells you the direction of the field lines.

Electric bells


An electric bell is a surprisingly clever device. It works using direct current from a battery, but it makes a hammer move repeatedly back and forth to strike the gong and produce the sound, which tells us, for example, that someone is at the door. Figure 20.3 shows the construction of a typical door bell. Notice that the hammer is attached to a springy metal strip, and is normally not in contact with the gong.

- When someone presses on the bell push, the circuit is completed. Current flows from the battery round through the electromagnet coil and the springy strip, and back to the battery via the contact point A.
- The coil is now magnetised and attracts the springy strip. Two things now happen: the hammer strikes the gong and the circuit breaks at point A.
- ◆ The current stops, the coil is no longer magnetised, and the strip springs back to its original position.
- Now the circuit is complete again and a current flows once more. The coil is magnetised and attracts the iron again, the hammer strikes the gong, and so on.
- This process repeats itself for as long as the bell push is depressed.

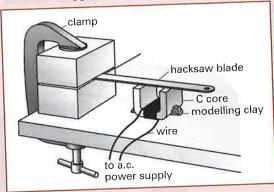
Relays

A **relay** is a switch operated by an electromagnet. In Chapter 19, we saw how a relay can be operated in an electric circuit. One type is shown in Figure 20.4, together with the circuit symbol.

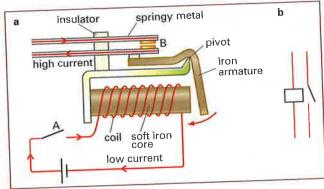
- ♦ When switch A is closed, a small current flows around a circuit through the coil of the electromagnet.
- ◆ The electromagnet attracts the iron armature. As the armature tips, it pushes the two contacts at B together, completing the second circuit.

Figure 20.3 The construction of an electric bell. For as long as the bell push is depressed, the hammer springs back and forth, striking the gong. The contact screw at A can be adjusted to ensure that the circuit breaks each time the hammer is attracted by the electromagnet.

A relay is used to make a small current switch a larger current on and off. For example, when a driver turns the ignition key to start a car, a small current flows to a relay in the engine compartment. This closes a switch to complete the circuit, which brings a high current to the starter motor from the battery.


Activity 20.1 Magnetic movements

Skills


- AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)
- AO3.3 Make and record observations, measurements and estimates

Use an electromagnet to make a buzzer. This makes use of the fact that, when a 50 Hz a.c. current flows through a coil, the magnetic field of the coil reverses and then reverses again, 50 times each second.

- 1 Wind 2.0 m of thin wire around a C core to make an electromagnet. Leave about 30 cm free at each end.
- **2** Connect the free ends to the output terminals of an a.c. supply.

- 3 Secure the electromagnet to the bench or table top with modelling clay. Clamp a hacksaw blade so that it is 2 or 3 mm above the electromagnet.
- 4 Switch on and gradually increase the voltage. The blade should vibrate up and down. If you position it correctly, it will make a buzzing noise by banging on the ends of the C core.
- 5 Can you adapt this system to make a model relay?

Figure 20.4 a A relay, capable of switching a circuit carrying hundreds of amps. **b** The circuit symbol for a relay – the rectangle represents the electromagnet coil.

Questions

- **20.1** A current flows downwards in a wire that passes vertically through a small hole in a table top. Will the magnetic field lines around it go clockwise or anticlockwise (as seen from above)?
- **20.2** Look back at the magnetic field pattern shown earlier in Figure 20.2. How can you tell from the pattern that the field gets weaker as you get further from the wire?
- **20.3** Look back at the diagram of the electric bell shown earlier in Figure 20.3.
 - **a** Why is the armature made of iron?
 - **b** Why must soft iron be used?
- **20.4** Look back at the diagram of the relay shown earlier in Figure **20.4a**. Why is the coil fitted with a soft iron core?
- 20.5 A TV star switches on lights in a shopping centre. She closes a switch, which operates a relay. The relay completes the circuit for the lights. Draw a circuit diagram for this, using the symbol shown earlier in Figure 20.4b. (Remember that there will be two circuits, one to operate the electromagnet coil, the other to power the lights.)

Comparing magnetic fields

We represent magnetic fields by drawing field lines. The arrows on the lines show the direction of the field at any point. This is the direction of the force on a north magnetic pole placed in the field.

As we have seen (Figure 20.3), there is a magnetic field around a current in a wire. A solenoid is a length of wire

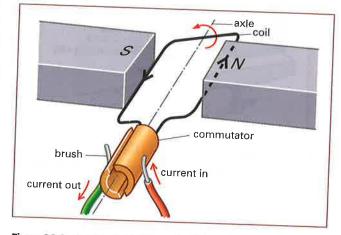
wound to form a coil; its field pattern is like that of a bar magnet, with field lines emerging from a north pole at one end of the coil and entering a south pole at the other (Figure 16.8). How do these field patterns compare?

- ◆ Current in a wire: The field lines are circles around the wire. Further from the wire they are further apart, showing that the field is weaker. If the current is greater, the field will be stronger and so the lines will be closer together. Reversing the current reverses the direction of the field.
- ◆ Current in a solenoid: The field lines are close together at the poles of the electromagnet. Further from the coil, the lines are further apart (weaker field). Inside the coil the field lines run parallel to each other showing that the field is uniform (its strength is constant). Again, increasing the current gives a stronger field. Reversing the current reverses the field.

20.2 How electric motors are constructed

The idea of an electric motor is this. There is a magnetic field around an electric current. This magnetic field can be attracted or repelled by another magnetic field to produce movement. It is not obvious how to do this so that continuous movement is produced. If you put two magnets together so that they repel, they move apart and stop. Electric motors are cleverly designed to produce movement that continues as long as the current flows.

brushes commutator current


Figure 20.5 This model is used to show the principles of operation of an electric motor.

You may have constructed a model electric motor like the one shown in Figure 20.5. This is designed to be easy to build and easy to understand. Its essential features are:

- a coil of wire, which acts as an electromagnet when a direct current flows through it
- two magnets, to provide a steady magnetic field passing through the coil
- a split-ring commutator, through which current reaches the coil
- two brushes, which are springy wires that press against the two metal sections of the commutator.
 The important features of the motor are shown in

The important features of the motor are shown in Figure 20.6. Here is our first explanation of how an electric motor works.

- 1 A current flows in through the right-hand brush, around the coil, and out through the other brush.
- When the current is flowing, the coil becomes an electromagnet. At the instant shown, the uppermost side of the coil is its north pole and the lowermost side is its south pole (see Figure 16.8). The north pole of the coil is attracted to the south pole of the permanent magnet on the left, and so the coil starts to turn to the left (anticlockwise).
- 3 This is where the commutator comes in. The coil is attracted round by the two permanent magnets. Its momentum carries it past the vertical position. Now, the brush connections to the two halves of the commutator are reversed. The current flows the opposite way around the coil.

Figure 20.6 A spinning electric motor. The coil is an electromagnet, which is attracted round by the permanent magnets. Every half turn, the commutator reverses the current flowing through the coil, so that it keeps turning in the same direction.

4 We again have a north pole on the uppermost side of the coil, so it turns another 180° anticlockwise.

Without the commutator, the coil would simply turn until it was vertical. The commutator cleverly reverses the current through the coil every half turn, so that the coil keeps on turning. If you have made a model like the one shown in Figure 20.5, you may have noticed electrical sparks flashing around the commutator.

These happen as the contact between the brush and one commutator segment is broken, and as it makes contact with the other segment.

For a d.c. motor like this to be of any use, its axle must be connected to something that is to be turned – a wheel, a pulley or a pump, for example. This model motor is not very powerful. The turning effect can be increased by increasing the number of turns of wire on the coil.

Questions

- 20.6 Look at the motor shown in Figure 20.6 and the explanation of how it works. Suppose that the two magnets were turned round so that there was a magnetic north pole on the left. Explain how the coil would move.
- **20.7 a** In a d.c. motor, why must the current to the rotor coil be reversed twice during each rotation?
 - **b** What device reverses the current?

Making motors more powerful

An electric motor makes use of a coil of wire with a current flowing through it – in other words, an electromagnet. The electromagnet spins round because its magnetic field interacts with the field of the permanent magnets. This means that a motor can be made more powerful in three ways:

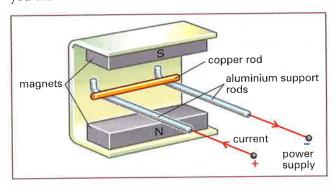
- by increasing the current in the electromagnet
- by having more turns of wire on the coil
- by making the permanent magnets stronger.

Study tip

Remember that there are two magnetic fields in an electric motor: the field of the permanent magnets and the field of the current-carrying coil.

Question

20.8 Describe how the turning effect of a d.c. motor will change if the current flowing through the motor coil is increased.


20.3 Force on a current-carrying conductor

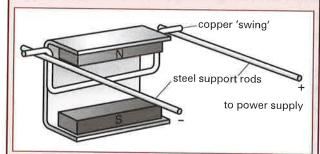
An electric motor has a coil with a current flowing around it (an electromagnet) in a magnetic field. It turns because the two magnetic fields interact with each other. However, it is not essential to have a coil to produce movement. The basic requirements are:

- a magnetic field
- ♦ a current flowing *across* the magnetic field. Figure 20.7 shows a way of demonstrating this in the laboratory. The copper rod is free to roll along the two aluminium support rods. The current from the power supply flows along one support rod, through the copper rod, and out through the other support rod. The two magnets provide a vertical magnetic field.

What happens when the current starts to flow? The copper rod rolls horizontally along the support rods. It is pushed by a horizontal force. The force comes about because the magnetic field around the current is repelled by the magnetic field of the permanent magnets. The force can be increased in two ways: by increasing the current and by using magnets with a stronger magnetic field. This force, which every electric motor makes use of, is known as the *motor effect*.

By swapping the connections to the power supply, you can reverse the direction of the current in the

Figure 20.7 Demonstrating the motor effect. There is a magnetic field around the current in the copper rod. This interacts with the field of the magnets, and the result is a horizontal force on the rod. A copper rod is used because it is a non-magnetic material. (A steel rod would be attracted to the magnets.)


Activity 20.2 The catapult field

Skills

AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

Try out a simple way to show the force on a current-carrying conductor.

- 1 Clamp two steel rods horizontally, parallel to one another.
- 2 Bend a length of copper wire as shown to form a 'swing', which can hang between the steel rods.
- **3** Attach two magnadur magnets to a yoke, ensuring that opposite poles are facing each other. Place the magnets around the swing, as shown.

- 4 Connect up the ends of the steel rods to a low-voltage d.c. power supply. The current should be able to flow along one rod, through the swing and back through the other rod.
- **5** Switch on and observe whether a force acts on the swing.
- **6** Investigate the effects of reversing the current and the magnetic field (separately).

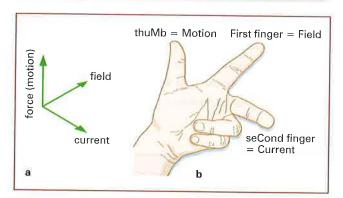
copper rod. The rod rolls in the opposite direction, showing that the force on it has been reversed. Similarly, if the magnets are reversed so that the magnetic field is in the opposite direction, the force on the copper rod is reversed. So, the force caused by the motor effect is *reversed* if:

- the direction of the current is reversed
- the direction of the magnetic field is reversed.

20.9 List **two** ways to reverse the force on a current-carrying conductor in a magnetic field.

Fleming's left-hand rule

In Figure 20.7, there are three things with direction (three vector quantities – see section 2.4 and section 3.6):


- the magnetic field
- the current
- the force.

The magnetic field is vertical. The current and the force are horizontal, and at right angles to each other. Hence we have three things that are all mutually at right angles to each other (Figure 20.8a). To remember how they are arranged, physicists use Fleming's left-hand rule (Figure 20.8b). It is worth practising holding your thumb and first two fingers at right angles like this. Then learn what each finger represents.

We use Fleming's left-hand rule to predict the direction of the force on a current-carrying conductor in a magnetic field. By keeping your thumb and fingers rigidly at right angles to each other, you can show that reversing the direction of the current or field reverses the direction of the force. (Do not try changing the direction of individual fingers. You have to twist your whole hand around at the wrist.)

Study tip

Practise keeping your thumb and first two fingers at 90° to each other – it can take time to get this right.

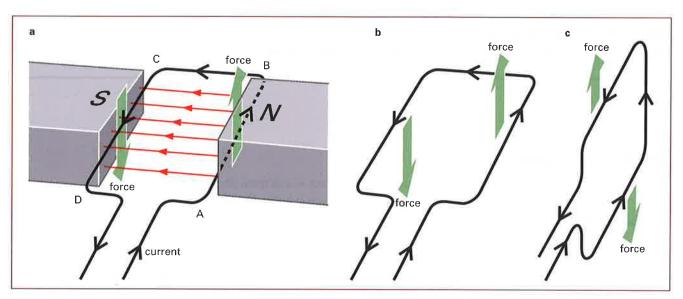
Figure 20.8 a Force, field and current are at right angles to each other. **b** Fleming's left-hand rule. Check that it correctly predicts the direction of the force on the current in Figure **20.7**.

Electric motors revisited

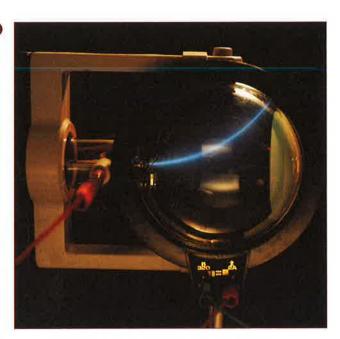
We can apply Fleming's left-hand rule to an electric motor. Figure 20.9a shows a simple electric motor with its coil horizontal in a horizontal magnetic field. The coil is rectangular. What forces act on each of its four sides?

- Side AB: The current flows from A to B, across the magnetic field. Fleming's left-hand rule shows that a force acts on it, vertically upwards.
- Side CD: The current is flowing in the opposite direction to the current in AB, so the force on CD is in the opposite direction, downwards.
- Sides BC and DA: The current here is parallel to the field. Since it does not cross the field, there is no force on these sides.

Figure 20.9b shows a simplified view of the coil. The two forces acting on it are shown. They cause the coil to turn anticlockwise. The two forces provide a turning effect (or torque), which causes the motor to spin. From Figure 20.9c, you can see that the forces will not turn the coil when it is vertical. This is where we have to rely on the coil's momentum to carry it further round.


The diagrams show the coil as if it were a single turn of wire. In practice, the coil might have hundreds of turns of wire, resulting in forces hundreds of times as great. A coil causes the current to flow across the magnetic field many times, and each time it feels a force. A coil is simply a way of multiplying the effect that would be experienced using a single length of wire.

Questions -


- **20.10** For Fleming's left-hand rule, write down the three things that are at 90° to each other, and, next to each one, write down the finger that represents it.
- **20.11** List **two** ways to increase the force on a current-carrying conductor in a magnetic field.
- **20.12** What is the force on a current-carrying conductor that is parallel to a magnetic field?

Electron beams and magnetic fields

A magnetic field can also be used to deflect a beam of electrons. This can be demonstrated in the laboratory using a vacuum tube (Figure 20.10). In this photograph, an electron beam is travelling from left to right in a

Figure 20.9 a A simple electric motor. Only the two longer sides experience a force, since their currents cut across the magnetic field. **b** The two forces provide the turning effect needed to make the coil rotate. **c** When the coil is in the vertical position, the forces have no turning effect.

Figure 20.10 An electron beam in a vacuum tube. Two electromagnet coils provide the magnetic field needed to deflect the beam upwards.

spherical vacuum tube. Two electromagnet coils (front and back) produce a horizontal magnetic field. The electrons feel an upward force, and this causes the beam to curve.

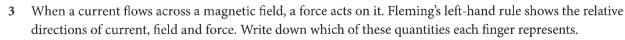
The electrons feel the same force as we saw earlier for a current-carrying conductor in a magnetic field. The direction of the force is given by Fleming's left-hand rule (but recall that the conventional current is in the opposite direction to the electron flow). Check the photograph: the electrons are moving from left to right, so the conventional current is right to left; the magnetic field is pointing towards the front; so the force must be upwards.

In fact, when a current-carrying conductor is placed in a magnetic field, it is the electrons that feel the force. They then transmit it to the conductor. Looking back at Figure 20.7, you can imagine the electrons flowing in the copper rod and being pushed to the right as they cross the magnetic field.

Summary

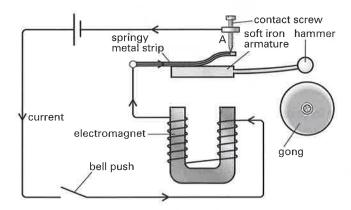
You should know:

- how electromagnets are used
- the turning effect on a current-carrying coil in a magnetic field
- the force on a current-carrying conductor in a magnetic field
- S ◆ Fleming's left-hand rule
- how beams of charged particles are deflected in magnetic fields.


End-of-chapter questions

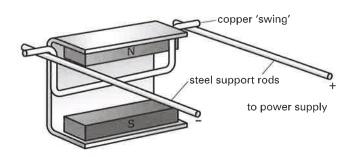
- Copy and complete the sentence below, choosing the correct words from the list to fill the three gaps.

 relays lamps motors batteries electric bells resistors


 Electromagnets are used in, and
- 2 Copy the sentence below, choosing the correct word from each pair.

 When a coil carrying a *current / voltage* is placed in a *magnetic / electric* field, there will be a *lifting / turning* effect on the coil, which makes the coil *rotate / attract*.

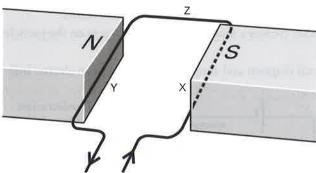
- a thumb
- **b** first finger
- c second finger
- 4 Copy and complete the sentence below. Fill the gaps with suitable words.


 When a beam of particles crosses a magnetic, a acts on the particles.
- 5 The diagram shows the circuit diagram and simple construction of an electric bell.

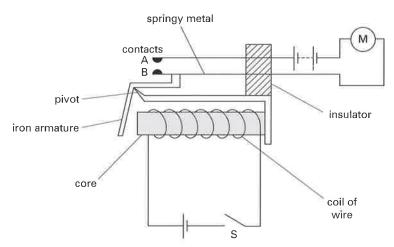
Put the following sentences in the correct order to explain how the bell operates.

ates.

- A current flows through the electromagnet.
- At the same time, the circuit is broken at point A.
- Someone presses the bell push.
- The circuit is completed again at A.
- The electromagnet attracts the iron armature.
- ◆ The hammer strikes the gong.
- The springy metal pulls the hammer back.
- 6 The motor effect is sometimes demonstrated using the apparatus shown. A current flows through a wire 'swing'. The swing hangs in a magnetic field. When the current is switched on, the swing is pushed out of the field.



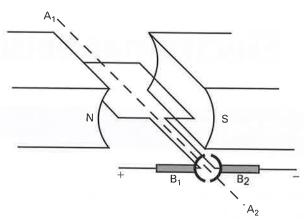
- a What will happen if the connections to the power supply are reversed?
- **b** What will happen if the magnetic field is reversed?


[1] [1]

[7]

- 7 Look again at the diagram in the previous question.
 - a In which direction is the magnetic field between the two magnets?
 - **b** In which direction will the swing be pushed? Why? [2]
- **8** A simplified diagram of an electric motor is as shown. The loop of wire is horizontal in a horizontal magnetic field.

- a In which direction is the force on side X of the wire loop?
- **b** In which direction is the force on side Y of the wire loop? [1]
- c Explain how these forces cause the loop to rotate. [2]
- d What can you say about the force on side Z? Why? [2]
- **9 a** The diagram shows a relay being used to switch an electric motor M on and off.


Switch S is closed. State what happens to:

- i the core [1]
- ii the iron armature [1]
- iii the contacts A and B. [1]
- **b** A suggestion is made that the relay would work better if the armature were made of steel instead of iron. Explain why this is **not** a good idea.

[Cambridge IGCSE® Physics 0625/22, Question 10c,d, May/June, 2010]

[2]

10 The diagram shows a simple motor with a rectangular coil that is free to rotate about an axis A_1A_2 . The coil is connected to a battery by brushes B_1 and B_2 .

- a Brush B_1 is connected to the positive terminal of the battery and brush B_2 is connected to the negative terminal of the battery.
 - i Draw just the coil, as seen from above, and on your diagram use an arrow to show the direction of the conventional current in the coil.
 - ii State the direction in which the coil rotates, when viewed from the end closest to the brushes. [1]
- **b** State what difference, if any, each of the following changes makes to the rotation of the coil:
 - i using a battery with a larger potential difference
 - ii using a coil with several turns of wire carrying the same current as in a
 - iii using a stronger magnetic field. [3]

[Cambridge IGCSE® Physics 0625/33, Question 8a,b, October/November, 2011]

21

Electromagnetic induction

In this chapter, you will find out:

- how an e.m.f. is induced in a circuit
- ♦ the factors affecting the magnitude and direction of an induced e.m.f.
 - about direct and alternating current
 - how transformers are constructed and used
- ♠ how transformers work.

Power plant

Modern societies depend greatly on electricity. However, we usually do not have to think about the electricity we use. We plug in a computer or switch on a light – and they work. Often, we have no idea where the electricity we use is generated.

Things can be different in a developing nation. Figure **21.1** shows how electricity is generated and used in the Kenyan village of Tungu-Kabiri, on the

slopes of Mount Kenya. This is a micro-hydroelectric scheme. Water is fed by a pipe to a turbine, which causes a generator to spin. This generates electricity at the rate of 14 kW – not a lot, but enough to keep several enterprises working, including a metal workshop, a hairdresser's and a food shop.

Local, environmentally friendly schemes like this can show the way forward for a developing country like Kenya.

Figure 21.1 The production and use of electricity in Tungu-Kabiri, Kenya. **a** Water from a dam is fed through the wall in the yellow pipe to the turbine on the left. A rubber belt transfers the rotation to the generator at the top. The operator is opening the valve to control the flow of water. **b** Welding equipment in use in the workshop in Tungu-Kabiri.

21.1 Generating electricity

A *motor* is a device for transforming electrical energy into mechanical (kinetic) energy. To generate electricity, we need a device that will do the opposite: it must transform mechanical energy into electrical energy. Fortunately, we can simply use an electric motor in reverse. If you connect up an electric motor to a meter and spin its axle, the meter will show that you have generated a voltage (Figure 21.2). Inside the motor, the coil is spinning around in the magnetic field provided by the permanent magnets. The result is that a current flows in the coil, and this is shown by the meter. We say that the current has been induced, and the motor is acting as a *generator*.

There are many different designs of generator, just as there are many different designs of electric motor. Some generate direct current, others generate alternating current. Some use permanent magnets, while others use electromagnets. If you have a bicycle, you may have a generator of a different sort - a dynamo - for powering the lights. The power station generators shown in Figure 21.3 generate alternating current at a voltage of about 25 kV. The turbines are made to spin by the high-pressure steam from the boiler. The generator is on the same axle as the turbine, so it spins too. A coil inside the generator spins around inside some fixed electromagnets, which provide the magnetic field. A large current is then induced in the rotating coil, and this is the current that the power station supplies to consumers. A fraction of it is used to supply the electromagnets of the generator itself.

All of these generators have three things in common:

- a magnetic field (provided by magnets or electromagnets)
- a coil of wire (fixed or moving)
- movement (the coil and magnetic field move relative to one another).

Figure 21.2 A motor can act as a generator. Spin the motor and the meter shows that an induced current flows around the circuit.

Figure 21.3 The turbine and generator in the generating hall of a Canadian nuclear power station. At the back are the turbines, fed by high-pressure steam in pipes. The generator is in the centre.

When the coil and the magnetic field move relative to each other, a current flows in the coil if it is part of a complete circuit. This is known as an *induced current*. If the generator is not connected up to a circuit, there will be an *induced e.m.f.* (or *induced voltage*) across its ends, ready to make a current flow around a circuit.

The principles of electromagnetic induction

The process of generating electricity from motion is called *electromagnetic induction*. The science of electromagnetism was largely developed by Michael Faraday (Figure 21.4). He invented the idea of the magnetic field, and drew field lines to represent it. He also invented the first electric motor. Then he extended his studies to show how the motor effect could work in reverse to generate electricity. In this section, we will look at the principles of electromagnetic induction that Faraday discovered.

As we have seen, a coil of wire and a magnet moving relative to each other are needed to induce a voltage across the ends of a wire. This is called the **dynamo effect**. If the coil is part of a complete circuit, the induced e.m.f. will make an induced current flow around the circuit.

In fact, you do not need to use a coil – a single wire is enough to induce an e.m.f., as shown in Figure 21.5a. The wire is connected to a sensitive meter to show when a current is flowing.

- Move one pole of the magnet downwards past the wire, and a current flows.
- Move the magnet back upwards, and a current flows in the opposite direction.

◆ Alternatively, the magnet can be stationary and the wire can be moved up and down next to it.

You can see similar effects using a magnet and a coil (Figure 21.5b). Pushing the magnet into and out of the coil induces a current, which flows back and forth in the coil. Here are two further observations:

• Reverse the magnet to use the opposite pole, and the current flows in the opposite direction.

Figure 21.4 Michael Faraday delivering a Christmas Lecture at the Royal Institution in London on 27 December 1855. He was a great populariser of science, and his lectures attracted many famous people. The artist, Alexander Blaikley, has included several members of the Royal Family in the audience, as well as famous scientists, including Charles Darwin, although it is unlikely that they were all present at this lecture. The Royal Institution Christmas Lectures started in 1826 and continue to this day. They are presented in the same lecture theatre. You may have seen them on television, as they are broadcast around the world.

 Hold the magnet stationary next to the wire or coil, and no current flows. They must move relative to each other, or nothing will happen.

In these experiments it helps to use a centre-zero meter. Then, if the needle moves to the left, it shows that the current is flowing one way; if it moves to the right, the current is flowing the other way.

Increasing the induced e.m.f.

There are three ways to increase the e.m.f. induced in a coil or wire:

- Use a stronger magnet.
- Move the wire or coil more quickly relative to the magnet.
- Use a coil with more turns of wire. (Each turn of wire will have an e.m.f. induced in it, and these all add together to give a bigger e.m.f.)

Generating a.c.

Faraday's discovery of electromagnetic induction led to the development of the electricity supply industry. In particular, it allowed engineers to design generators that could supply electricity. At first, this was only done on a small scale, but gradually generators got bigger and bigger, until, like the ones shown in Figure 21.3, they were capable of supplying the electricity demands of thousands of homes.

A generator of this type produces **alternating current (a.c.)**. This means that the current is not direct current (d.c.), which always flows in the same direction.

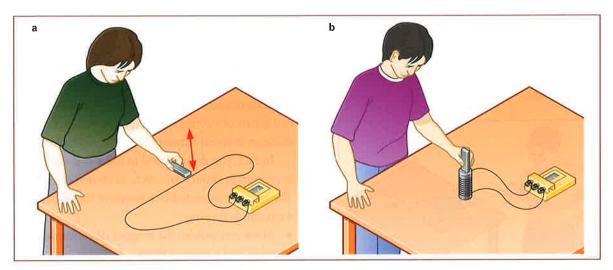


Figure 21.5 a Move a magnet up and down next to a stationary wire and an induced current will flow. b Similarly, move a magnet into and out of a coil of wire and an induced current will again flow. Michael Faraday first did experiments like this in 1831.

Instead, an alternating current flows back and forth. Figure 21.6 shows a graph of this. Half of the time, the current flows in the positive direction. Then it flows in the opposite direction. The frequency of an a.c. supply is the number of cycles it produces each second.

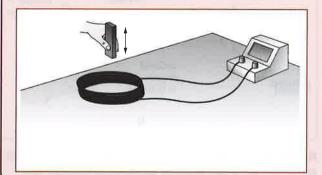
Study tip

In most countries, the electricity supply is a.c. with a frequency of 50 Hz or 60 Hz.

Activity 21.1 Inducing electricity

Skills

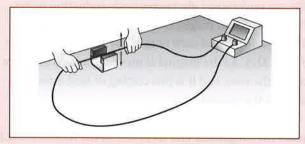
AO3.1 Demonstrate knowledge of how to safely use techniques, apparatus and materials (including following a sequence of instructions where appropriate)

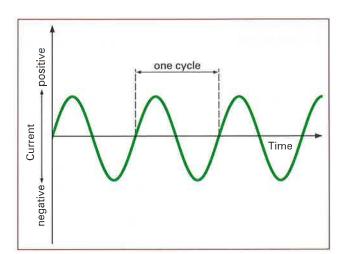

A03.2 Plan experiments and investigations

Make some observations of electromagnetic induction.

In the first part of this activity, you move a magnet relative to a wire. In the second part, you move a wire relative to a magnet. In both cases, you should observe an induced e.m.f. (voltage).

Part 1


- 1 Coil 2.0 m of thin insulated wire with bare ends to make a solenoid approximately 5 cm in diameter. (The coil can be flat like in the diagram rather than long.) Alternatively, use a ready-made solenoid.
- 2 Connect the ends of the coil to the terminals of a sensitive voltmeter or ammeter.
- 3 Bring one pole of a bar magnet towards and into the centre of the coil. Observe the reading on the meter.


- 4 Now investigate how the reading on the meter changes in different circumstances:
 - Move the bar magnet at different speeds into the coil.
 - Use the opposite pole of the bar magnet.
 - ◆ Move the bar magnet out of the coil.
 - Hold the bar magnet stationary at different distances from the coil.

Part 2

- **5** Straighten out the wire. Keep the ends connected to the meter.
- 6 Mount two magnadur magnets on a yoke. Ensure that opposite poles are facing each other. There is a strong magnetic field between the magnets.
- 7 Hold a section of the wire, approximately 10 cm in length, between your two hands. Move the wire downwards through the field. Observe the reading on the meter.

- 8 Now investigate how the reading on the meter changes in different circumstances:
 - Move the wire at different speeds through the magnetic field.
 - Reverse the direction of the magnetic field.
 - Move the wire out of the magnetic field.
 - Hold the wire stationary in the magnetic field.

Figure 21.6 A graph to represent an alternating current. For the first half of a cycle, the current flows one way. Then it goes into reverse.

Questions

- **21.1** Draw a diagram to show the energy transformations in:
 - a an electric motor
 - **b** a generator.

Remember that neither is 100% efficient.

21.2 If you hold a coil of wire next to a magnet, no current will flow. What else is needed to induce a current?

Induction and field lines

We can understand electromagnetic induction using Faraday's idea of magnetic field lines. Picture the field lines coming out of each pole of the magnets shown in Figure 21.5. As the magnet is moved, the field lines are cut by the wire, and it is this cutting of field lines that induces the current.

This idea helps us to understand the factors that affect the magnitude and direction of the induced e.m.f.

- ◆ If the magnet is stationary, there is no cutting of field lines and so no e.m.f. is induced.
- If the magnet is further from the wire, the field lines are further apart and so fewer are cut, giving a smaller e.m.f.
- If the magnet is moved quickly, the lines are cut more quickly and a bigger e.m.f. is induced.
- ◆ A coil gives a bigger effect than a single wire, because each turn of wire cuts the magnetic field lines and each therefore contributes to the induced e.m.f.

Fleming's right-hand rule

We have seen that, if a wire is moved so that it cuts across a magnetic field, a current will be induced in the wire. How can we work out the direction of the current? In Chapter 20, we saw the opposite effect – when a current flows in a magnetic field, there is a force on it so that it moves. The directions of force, field and current were given by Fleming's left-hand rule. It is not surprising to find that, in the case of electromagnetic induction, the directions are given by Fleming's right-hand rule. As shown in Figure 21.7, the thumb and first two fingers show the directions of the same quantities.

Study tip

When using either of Fleming's rules, if you use the wrong hand, the direction you deduce will be opposite to the correct direction.

An a.c. generator

Figure 21.8 shows a simple a.c. generator, which produces alternating current. In principle, this is like a d.c. motor, working in reverse. The axle is made to turn so that the coil spins around in the magnetic field, and a current is induced. The other difference is in the way the coil is connected to the circuit beyond. A d.c. motor uses a split-ring commutator, whereas an a.c. generator uses slip rings.

Why does this generator produce alternating current? As the coil rotates, each side of the coil passes first the magnetic north pole and then the south pole.

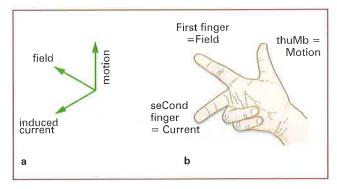
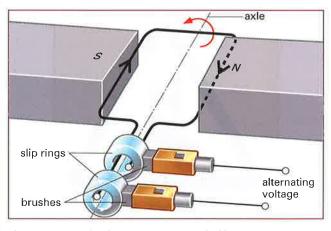


Figure 21.7 a When a current is induced in a wire, motion, field and current are at right angles to each other. b Fleming's right-hand rule is used to work out the direction of the induced current.

This means that the induced current flows first one way, and then the other. In other words, the current in the coil is alternating.


The current flows out through the slip rings. Each ring is connected to one end of the coil, so the alternating current flows out through the brushes, which press against the rings.

There are four ways of increasing the voltage generated by an a.c. generator like the one shown in Figure 21.8:

- turn the coil more rapidly
- use a coil with more turns of wire
- use a coil with a bigger area
- use stronger magnets.

Each of these has the effect of increasing the rate at which magnetic field lines are cut, and so the induced e.m.f. is greater. For the a.c. generator shown in Figure 21.8, each revolution of the coil generates one cycle of alternating current. Spin the coil 50 times each second and the a.c. generated has a frequency of 50 Hz.

If we think about how the coil cuts through magnetic field lines, we can understand why the a.c. graph varies between positive and negative values. With the coil in the horizontal position, as shown in Figure 21.8, its two long sides are cutting rapidly through the magnetic field lines. This gives a large induced e.m.f., corresponding to a peak in the a.c. graph. When the coil is vertical, its long sides are moving along the field lines, so they are not cutting them. This gives no induced e.m.f., a zero point on the a.c. graph. When the coil has turned through

Figure 21.8 A simple a.c. generator works like a motor in reverse. The slip rings and brushes are used to connect the alternating current to the external circuit.

180°, it will be cutting field lines quickly again, but in the opposite direction, so the induced e.m.f. will again be large, but this time it will be negative.

Direction of the induced e.m.f.

How does an induced current 'know' in which direction it must flow? The answer is that the current (like all currents) has a magnetic field around it. This field always pushes back against the field that is inducing the current. So, for the coil shown in Figure 21.5b, when the magnet's north pole is pushed towards the coil, the current flows so as to produce a north pole at the end of the coil nearest the magnet. These two north poles repel each other. Hence you have to push the magnet towards the coil, and thereby do work. The energy you use in pushing the magnet is transferred to the current. That is where the energy carried by a current comes from. It comes from the work done in making a conductor cut through magnetic field lines.

An induced current always flows in such a way that its magnetic field opposes the change that causes it.

Questions •

- 21.3 The north pole of a magnet is moved towards a coil of wire, as shown in Figure 21.5b, so that an induced current flows. State two ways in which the student could cause an induced current to flow in the opposite direction.
- **21.4** State **two** ways in which the current induced in the coil (Figure 21.5b) could be increased.
- 21.5 List the four features of a large a.c. generator from a power station (Figure 21.3) that make it capable of generating a higher voltage than the model a.c. generator shown in Figure 21.8.

21.2 Power lines and transformers

Power stations may be 100 km or more from the places where the electricity they generate is used. This electricity must be distributed around the country. High-voltage electricity leaves the power station.

Its voltage may be as much as one million volts. To avoid danger to people, it is usually carried in cables called **power lines** slung high above the ground between tall pylons. Lines of pylons stride across the countryside, heading for the urban and industrial areas that need the power (Figure 21.9). This is a country's **national grid**.

When the power lines approach the area where the power is to be used, they enter a local distribution centre. Here the voltage is reduced to a less hazardous level, and the power is sent through more cables (overhead or underground) to local substations. In the substation, transformers reduce the voltage to the local supply voltage, typically 230 V. Wherever you live, there is likely to be a substation in the neighbourhood. It may be in a securely locked building, or the electrical equipment may be surrounded by fencing, which carries notices warning of the hazard (Figure 21.10).

From the substation, electricity is distributed around the neighbouring houses. In some countries, the power is carried in cables buried underground. Other countries use tall 'poles', which hold the cables above the level of traffic in the street to distribute the power. Overhead power lines and cables can be an eyesore, but the cost of burying cables underground can be ten or a hundred times as great as using poles.

Why use high voltages?

The high voltages used to transmit electrical power around a country are dangerous. That is why the cables that carry the power are supported high above people, traffic and buildings on tall pylons. Sometimes the

cables are buried underground, but this is much more expensive, and the cables must be safely insulated. There is a good reason for using high voltages. It means that the current flowing in the cables is relatively low, and this wastes less energy. We can understand this as follows.

When a current flows in a wire or cable, some of the energy it is carrying is lost because of the cable's resistance – the cables get warm. A small current wastes less energy than a high current. Electrical engineers do everything they can to reduce the energy losses in the cables. If they can reduce the current to half its value (by doubling the voltage), the losses will be one-quarter of their previous value. This is because power losses in cables are proportional to the *square* of the current flowing in the cables:

- double the current gives four times the losses
- three times the current gives nine times the losses.

Transformers

A **transformer** is a device used to increase or decrease the voltage of an electricity supply. They are designed to be as efficient as possible (up to 99.9% efficient). This is because the electricity we use may have passed through as many as 10 transformers before it reaches us from the power station. A loss of 1% of energy in each transformer would represent a total waste of 10% of the energy leaving the power station.

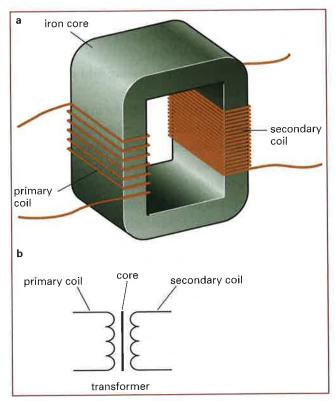

Power stations typically generate electricity at $25\,\mathrm{kV}$. This has to be converted to the grid voltage – say $400\,\mathrm{kV}$ – using transformers. For these voltages, we say that the voltage is stepped up by a factor of 16. Figure 21.11

Figure 21.9 Electricity is usually generated at a distance from where it is used. If you look on a map, you may be able to trace the power lines that bring electrical power to your neighbourhood.

Figure 21.10 An electricity substation has warning signs like this to indicate the extreme hazard of entering the substation.

Figure 21.11 a The structure of a transformer. This is a step-up transformer because there are more turns on the secondary coil than on the primary. If the connections to it were reversed, it would be a step-down transformer. **b** The circuit symbol for a transformer shows the two coils with the core between them.

shows the construction of a suitable transformer. Every transformer has three parts:

- ◆ a primary coil the incoming voltage V_p is connected across this coil
- ◆ a secondary coil this provides the voltage V_s to the external circuit
- ◆ an iron core this links the two coils.

Notice that there is *no electrical connection* between the two coils. They are linked together only by the iron core. Notice also that the voltages are both alternating voltages – a transformer does not change a.c. to d.c. or anything of the sort. It changes the size of an alternating voltage.

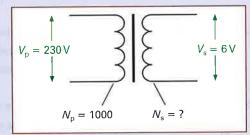
To step up the input voltage by a factor of 16, there must be 16 times as many turns on the secondary coil as on the primary coil. Comparing the numbers of turns on the two coils tells us how the voltage will be changed.

- ◆ A *step-up transformer* increases the voltage, so there are more turns on the secondary than on the primary.
- A step-down transformer reduces the voltage, so there are fewer turns on the secondary than on the primary.

(Note that, if the voltage is stepped up, the current must be stepped down, and vice versa.)

The ratio of the numbers of turns tells us the factor by which the voltage will be changed. Hence we can write an equation, known as the *transformer equation*, relating the two voltages, $V_{\rm p}$ and $V_{\rm s}$, to the numbers of turns on each coil, $N_{\rm p}$ and $N_{\rm s}$:

voltage across primary coil voltage across secondary coil


 $\frac{\text{number of turns on primary}}{\text{number of turns on secondary}}$

$$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$

Worked example 21.1

A transformer is needed to step down the 230 V mains supply to 6.0 V. If the primary coil has 1000 turns, how many turns must the secondary have?

Step 1: Draw a transformer symbol, and mark on it the information from the question, as in the diagram.

Step 2: Write down the transformer equation.

$$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$

Step 3: Substitute values from the question.

$$\frac{230 \text{ V}}{6 \text{ V}} = \frac{1000}{N_c}$$

Step 4: Rearrange and solve for N_s .

$$N_s = \frac{1000 \times 6 \text{ V}}{230 \text{ V}} = 26.1 \text{ turns}$$

So the secondary coil must have 26 turns.

It will help you to recall the transformer equation if you remember that the coil with most turns has the higher voltage.

Study tip

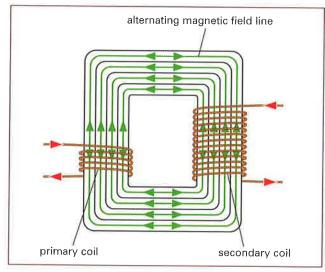
Remember that transformers only work with a.c.

Is the answer to Worked example 21.1 reasonable? The voltage has to be greatly reduced, so the number of turns on the secondary coil must be much less than 1000. Mental arithmetic shows that the voltage has to be reduced by a factor of about 40 (from 230 V to 6 V), so the number of turns must be reduced by the same factor. So N_s is about $\frac{1000}{40} = 25$. This is an *approximate* answer.

Questions

- **21.6** Why is electrical power transmitted in the grid at high voltage?
- **21.7** Name the **three** essential parts of a transformer.
- **21.8** A transformer has 100 turns on the primary coil and 1000 on the secondary. Is it a step-up or a step-down transformer?
- **21.9** A portable radio has a built-in transformer so that it can work from the mains instead of batteries. Is this a step-up or step-down transformer?
- **21.10** A step-up transformer has 2000 turns on one coil and 5000 on the other. Calculate the ratio $\frac{N_s}{N_s}$ for this transformer.
- **21.11** A transformer is designed to provide 20 V from a 240 V supply. If the primary coil has 1200 turns, how many turns must the secondary have?

21.3 How transformers work


Transformers only work with alternating current (a.c.). To understand why this is, we need to look at how a transformer works (Figure 21.12). It makes use of electromagnetic induction.

- The primary coil has alternating current flowing through it. It is thus an electromagnet, and produces an alternating magnetic field.
- The core transports this alternating field around to the secondary coil.
- Now the secondary coil is a conductor in a changing magnetic field. A current is induced in the coil. (This is another example of electromagnetic induction at work.)

If the secondary coil has only a few turns, the e.m.f. induced across it is small. If it has a lot of turns, the e.m.f. will be large. Hence, to get a high voltage out, we need a secondary coil with a lot of turns compared to the primary.

If direct current is connected to a transformer, there is no output voltage. This is because the magnetic field produced by the primary coil is unchanging. With an unchanging field passing through the secondary coil, no voltage is induced in it.

Notice from Figure 21.12 that the magnetic field links the primary and secondary coils. The energy being brought by the current in the primary coil is transferred to the secondary by the magnetic field. This means that the core must be very good at transferring magnetic energy. A soft magnetic material must be used – usually an alloy of iron with a small amount of silicon. (Recall that soft magnetic materials are ones that can be magnetised and demagnetised easily.)

Figure 21.12 The a.c. in the primary coil produces a varying magnetic field in the core. This induces a varying current in the secondary coil.

Even in a well-designed transformer, some energy is lost because of the resistance of the wires, and because the core 'resists the flow' of the changing magnetic field.

Questions

- **21.12 a** What is the function of the core of a transformer?
 - **b** Why must the core be made of a soft magnetic material?
- **21.13** Explain why a transformer will not work with direct current.

Calculating current

To transmit a certain power P, we can use a small current I if we transmit the power at high voltage V. This follows from the equation for electrical power (see Chapter 18):

electrical power P = IV

Worked example 21.2 shows how this works.

Energy saving

From the results of Worked example 21.2, you should be able to understand why electricity is transmitted around the country at high voltages. The higher the voltage, the smaller the current in the cables, and so the smaller the energy losses. Increasing the voltage by a factor of 20 reduces the current by a factor of 20. This means that the power lost in the cables is greatly reduced (in fact, it is reduced by a factor of 20², which is 400), and so thinner cables can safely be used.

The current flowing in the cables is a flow of coulombs of charge. At high voltage, we have fewer coulombs flowing, but each coulomb carries more energy with it.

Thinking about power

If a transformer is 100% efficient, no power is lost in its coils or core. This is a reasonable approximation, because well-designed transformers waste only about 0.1% of the power transferred through them. This

Worked example 21.2

Suppose that a power station generates 500 MW of power. What current will flow from the power station if it transmits this power at 50 kV? What current will flow if it transmits it at 1 MV?

Step 1: Rearranging P = IV, we have the equation we need to use.

$$I = \frac{P}{V}$$

Step 2: Substituting values for the first case $(P = 500 \text{ MW} = 500 \times 10^6 \text{ W}, V = 50 \text{ kV} = 50 \times 10^3 \text{ V})$ gives the current as:

$$I = \frac{500 \times 10^6 \text{ W}}{50 \times 10^3 \text{ V}} = 10000 \text{ A}$$

Step 3: Now consider the second case, when the power is transmitted at 1 MV (10⁶V), which is the operating voltage of some national grids. Substituting values, the current is now given by:

$$I = \frac{500 \times 10^6 \text{ W}}{10^6 \text{ V}} = 500 \text{ A}$$

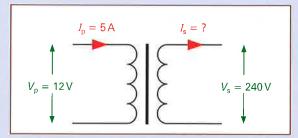
allows us to write an equation relating the primary and secondary voltages, V_p and V_s , to the primary and secondary currents, I_p and I_s , flowing in the primary and secondary coils, using P = IV:

power in to primary coil

= power out of secondary coil

$$I_{p} \times V_{p} = I_{s} \times V_{s}$$

Worked example 21.3 shows how to use this equation.


Study tip

Note that this equation assumes that no power is lost in the transformer.

Worked example 21.3

The primary coil of a transformer is connected to a 12 V alternating supply, and carries a current of 5.0 A. If the output voltage is 240 V, what current flows in the secondary circuit? Assume that the transformer is 100% efficient.

Step 1: Draw a transformer symbol and mark on it the information from the question as shown in the diagram.

Step 2: Think about what a reasonable answer might be. The voltage is being stepped up by a factor of 20 (from 12 V to 240 V). So the current will be stepped down by the same factor. You can probably see that the

secondary current will be one-twentieth of the primary current, that is $\frac{5}{20} = \frac{1}{4} = 0.25$ A. (This is the correct answer, but we will press on with the formal calculation.)

Step 3: Write down the transformer power equation.

$$I_{\rm p} \times V_{\rm p} = I_{\rm s} \times V_{\rm s}$$

Step 4: Substitute values from the question.

$$5 \text{ A} \times 12 \text{ V} = I_s \times 240 \text{ V}$$

Step 5: Rearrange and solve for I_s .

$$I_{\rm s} = \frac{5 \,\mathrm{A} \times 12 \,\mathrm{V}}{240 \,\mathrm{V}} = 0.25 \,\mathrm{A}$$

Hence the current supplied by the secondary coil is 0.25 A. So, in stepping up the voltage, the transformer has stepped down the current. If both had been stepped up, we would be getting something for nothing – which in physics, is impossible!

Questions

- **21.14** In a step-up transformer, is the current in the secondary coil greater than or less than the current in the primary coil?
- **21.15 a** A power distribution system transmits 200 MW of power at a current of 500 A. At what voltage is the power distributed? Give your answer in kV.
 - **b** It is proposed to double the distribution voltage. What current will now flow in the cables?

- **c** If power losses in the existing system are 6 MW, what will they be if the higher-voltage system is adopted?
- **21.16** A transformer is used to reduce a 230 V mains supply to 6.0 V, to power a radio.
 - **a** If the primary coil has 6000 turns, how many turns must the secondary have?
 - **b** If, in normal use, a current of 0.040 A flows in the primary coil, what current flows in the secondary?
 - **c** What assumption must be made to solve part **b**?

Summary

You should know:

- how e.m.f.s and currents are induced in electromagnetic induction
- ♦ how to predict the directions of the induced e.m.f.s and currents
 - ◆ about alternating current (a.c.) and direct current (d.c.)
 - about electrical power transmission at high voltages
 - how transformers are constructed and used

End-of-chapter questions

1 Copy and complete the following sentences, filling the gaps with words from the list, to give a description of electromagnetic induction.

magnetic

current

conductor

induced

circuit

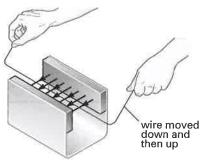
When a is moved so that it cuts across a field, an e.m.f. is across its ends. If there is a complete, an induced will flow.

2 Copy and complete the table about the properties of alternating current (a.c.) and direct current (d.c.). In each space in the first column, write a.c. or d.c.

Current: a.c. or d.c.?	Property
	always in the same direction
	changes direction back and forth
	has a frequency in hertz (Hz)
N.	produced by a cell or battery
	voltage can be changed by a transformer
	Time
	Time

3 Copy and complete the following sentences, filling the gaps with suitable words, to give a description of an a.c. generator.

In an a.c. generator, a of wire is made to in a field. An is induced across its ends and this can make a flow in a circuit.

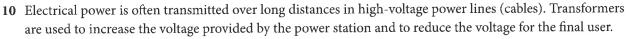

- When a conductor is moved through a magnetic field, a current is induced in the conductor. Fleming's right-hand rule shows the relative directions of movement, field and current. Write down which of these quantities each finger represents.
 - a thumb
 - **b** first finger
 - c second finger
 - 5 Copy and complete the following sentences, choosing the correct word from each pair. Electricity is often transmitted at *low / high* voltages. This is because the current is *smaller / greater* so that *more / less* energy is wasted as heat in the cables.
 - **6** Copy and complete the following sentences, filling the gaps with suitable words.
 - a A transformer has three parts, the coil, the and the coil.
 - **b** A transformer increases the of the supply.
 - c A transformer decreases the of the supply.
 - 7 Here is the transformer equation. Copy the equation and state what each of the four symbols represents.

$$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$

The equation below is for a transformer that is 100% efficient. Copy the equation and state what each of the four symbols represents.

$$I_{\mathrm{p}} \times V_{\mathrm{p}} = I_{\mathrm{s}} \times V_{\mathrm{s}}$$

9 A student holds a bent piece of wire in a horizontal magnetic field, as shown. She moves the wire downwards through the field, and then upwards.



- a Explain why an e.m.f. is induced between the ends of the wire.
- **b** How will the e.m.f. differ between moving the wire downwards and moving it upwards?
- c Suggest how she could move the wire to induce a bigger e.m.f. across its ends.
- **d** She now moves the wire horizontally from side to side in the magnetic field. Will an e.m.f. be induced? Give a reason to support your answer.

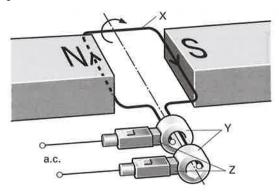
[1]

[1]

[1]

a Explain why electricity is transmitted at high voltages like this.

[1]


b A transformer has 10 turns of wire on its primary coil and 200 turns on its secondary coil. If the p.d. across the primary coil is 3.0 V a.c., what will the e.m.f. across the secondary be?

[3]

c How could the same transformer be used as a step-down transformer?

[1]

11 The diagram shows a simple a.c. generator.

a Name the parts labelled i X, ii Y and iii Z.

[3]

b Describe the essential difference between alternating current and direct current. Include a diagram to support your answer.

[3]

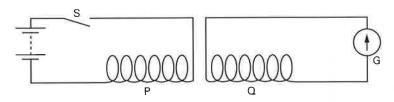
- 12 Look again at the generator shown in the previous question.
 - Suggest two ways in which the coil could be altered to induce a bigger e.m.f.

[2]

Suggest two other ways in which the e.m.f. could be increased.

[2]

- 13 A transformer is used to transform a 230 V mains supply to 12 V for a computer games console.
 - a The primary coil has 5000 turns. How many turns should there be on the secondary coil?


[3]

b In normal use, a current of 0.40 A flows in the secondary coil. What current flows in the primary coil? Assume that there are no power losses in the transformer.

[3]

14 A coil P is joined to a battery and a switch S. A similar coil Q is joined to a sensitive centre-zero millivoltmeter G.

P and Q are placed end to end, as shown in the diagram.

- a Describe what is seen happening to the reading of G:
 - i as switch S is closed

[2]

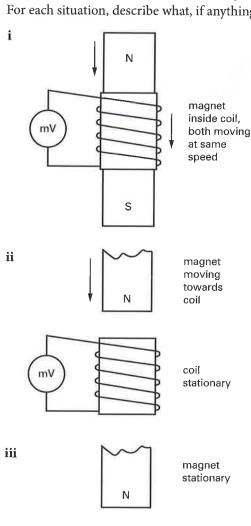
ii as switch S is opened again.

[1]

b A soft iron bar, as long as the combined lengths of P and Q, is placed inside P and Q. State what difference this makes to what is observed on G as S is closed.

[1]

- **c** The bar in **b** is removed and the battery is changed for one with a smaller e.m.f. State what difference this makes to what is observed on G as S is closed.
- **d** The battery is replaced by an a.c. power supply of frequency 50 cycles per second, and then S is closed. Describe what is seen on G.


[Cambridge IGCSE® Physics 0625/23, Question 10, October/November, 2011]

- 15 A coil is wound on a cylindrical cardboard tube and connected to a sensitive centre-zero millivoltmeter. The diagrams show three situations involving the coil and a magnet.
 - a For each situation, describe what, if anything, is seen happening on the millivoltmeter.

[3]

[1]

[1]

b Choose one of the situations in a where something is seen happening to the millivoltmeter.

For this situation, state three changes that could be made to increase the magnitude of what is seen. [3]

[Cambridge IGCSE® Physics 0625/33, Question 8, October/November, 2010]

moving towards magnet

Block 5

Atomic physics

A century ago, many physicists were still reluctant to believe that matter is made of atoms. How could you believe in particles that were invisible? Today, it is generally accepted that atoms are made of protons, neutrons and electrons, and that protons and neutrons are themselves made up of even smaller particles called quarks.

There are many other particles, too, which we have come to understand (although we cannot see them). There are particles associated with the fundamental forces of nature. The photograph shows a small section of the Large Hadron Collider (LHC) at the European Centre for Nuclear Research (CERN) near Geneva. In 2012, scientists at the CERN laboratory announced the success of their search for the Higgs boson, a fundamental particle that is thought to give matter its mass.

When the atomic nucleus was discovered, the apparatus used was small enough to fit on a laboratory bench. As physicists have searched for even smaller particles, the instruments they have used (like the LHC) have become bigger and bigger.

Another surprising fact is that, in learning more about the underlying structure of matter, we have learned more about the origin and development of the Universe itself. The LHC is described as 'taking us back to within a fraction of a second of the Big Bang'.

A view of part of the 27 km long circular tunnel of the LHC at CERN. The LHC is so big that technicians travel around it on bicycles.

22

The nuclear atom

In this chapter, you will find out:

- about the structure of atoms
- evidence for the nuclear model of the atom
 - the composition of the nucleus
 - how to represent nuclides in the form ^A/₂X
 - the meaning of the term 'isotope'.

Matter and atoms

You probably have the idea in your head that 'all matter is made of atoms', and that is more or less true. Most of the matter around you – buildings, the air, your body, this book – is made of tiny atoms, far too small to be seen individually. You have probably also seen an image of an atom like the one shown on the coin in Figure 22.1. This is an old Greek 10-drachma coin (an old coin that was used before Greece changed to the euro). On the other side, it shows Democritus, the Greek philosopher who is usually credited with first suggesting the idea that matter was made of tiny, indivisible particles called atoms.

A STATE OF THE STA

If you look at the image of the atom, you will see that it shows a tiny nucleus at the centre, with three electrons travelling around it along circular paths. (The paths are shown as ellipses because of the perspective view.) This image of an atom is like a tiny solar system, and it is not how Democritus would have pictured an atom. He believed that atoms were the smallest building blocks of matter, so they could not be divided into anything smaller. The word 'a-tom' means 'not divisible'.

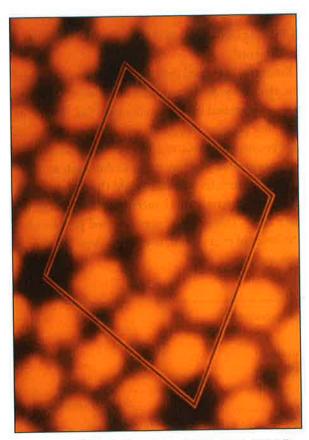
The mini-solar-system picture of the atom was developed in the early years of the 20th century, and it is still quite a useful model. Today, most scientists would picture an atom rather differently. This chapter looks the structure of atoms and the particles they are made of.

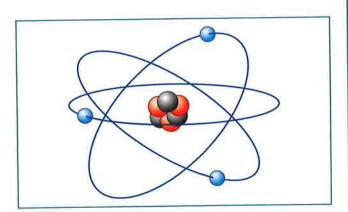
Figure 22.1 One side of this old Greek 10-drachma coin shows Democritus, a philosopher who lived almost 2500 years ago. According to his atomic theory, matter is made up of vast numbers of tiny particles, which come together in different combinations to make the things we see around us. The reverse side of the coin shows a modern image of a single atom. Democritus would not have imagined that an atom could be subdivided into a nucleus and electrons.

22.1 Atomic structure

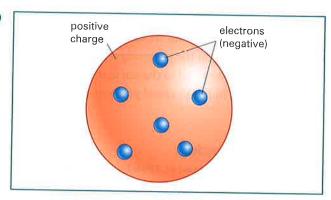
At one time, physics textbooks would have said that atoms are very tiny, too tiny ever to be seen. Certainly, a single atom is too small to be seen using a conventional light microscope. But technology has made great advances. Now there is more than one kind of microscope that can be used to show individual atoms. Figure 22.2 shows a photograph made using a scanning tunnelling microscope. The picture shows silicon atoms on the surface of a crystal of silicon (the material that transistors and computer chips are made from). The diamond shape shows a group of 12 atoms. The whole crystal is made up of vast numbers of groups of atoms like this.

In 1910, Ernest Rutherford and his colleagues discovered that every atom has a tiny central nucleus.




Figure 22.2 Individual silicon atoms (bright spots, artificially coloured by a computer) on the surface of a silicon crystal, observed using a scanning tunnelling microscope. The diamond shape (which has been drawn on the image) indicates the basic repeating pattern that makes up the crystal structure of silicon. In this photograph, the silicon atoms are magnified 100 million times. (A good light microscope can only magnify by about 1000 times.) Roughly speaking, 4000 000 000 atoms would fit into a length of 1 m.

This gave rise to the 'solar system' **model** of the atom shown in Figure 22.3. In this model, the negatively charged electrons orbit the positively charged nucleus. The electrons are attracted to the nucleus (because of its opposite charge), but their speed prevents them from falling into it.


Discovering the nucleus

Electrons were discovered in 1896 by the English physicist, J. J. Thomson. He realised that electrons were much smaller than atoms, at least one thousand times lighter than a hydrogen atom. (Now we can be more accurate and say that the mass of an electron is about $\frac{1}{1836}$ of the mass of a hydrogen atom.) He guessed, correctly, that electrons were part of atoms. He even suggested that atoms were made up entirely of electrons, spinning in such a way that they stuck together. This was not a very successful model.

Other scientists argued that, since electrons had negative charge, there must be other particles in an atom with an equal amount of positive charge, so that an atom has no overall charge – it is neutral. Since electrons have very little mass, the positive charge must also account for most of the mass of the atom. Figure 22.4 shows a model that illustrates this. The atom is formed from a sphere of positively charged matter with tiny, negatively charged electrons embedded in it. This is the famous 'plum pudding model', where the electrons are the negatively charged plums in the positively charged pudding. You can see that this is a different model from the 'solar system' model we described earlier (Figure 22.3).

Figure 22.3 The nuclear model of the atom – three electrons are orbiting a nucleus made up of three protons and three neutrons.

Figure 22.4 The plum pudding model of an atom. Electrons (negatively charged) form the plums stuck in a spherical pudding (positively charged).

So why do we no longer think that atoms are like plum puddings? The answer comes from some work done by the New Zealander Ernest Rutherford and his colleagues, about ten years after Thomson's discovery of the electron.

Radioactivity had been discovered at about the same time as the electron. Rutherford understood that the radiation coming from radioactive substances – alpha, beta and gamma radiation – was a result of changes happening in individual atoms. (You will find more about radioactivity and the different types of radiation in Chapter 23.) Tiny particles or rays were being ejected from inside atoms, and Rutherford thought that he could use this radiation to investigate other atoms. Rutherford decided to use alpha radiation to probe the atoms in a sample of gold.

Alpha radiation consists of tiny, fast-moving positively charged particles. Rutherford's colleagues Geiger and Marsden set up an experiment (Figure 22.5) in which alpha radiation was directed at a thin gold foil. They expected the alpha particles to be deflected as they passed through the foil, because their paths would be affected by the positive and negative charges of the atoms. (You might be surprised to think of anything passing through something as solid as gold. Rutherford pictured the alpha particles as tiny bullets, fired through a wall of plum puddings.)

Geiger and Marsden found that most of the alpha particles passed straight through the gold foil, scarcely deflected. However, a very few bounced back towards the source of the radiation. It was as if there was something very hard in the gold foil – like a

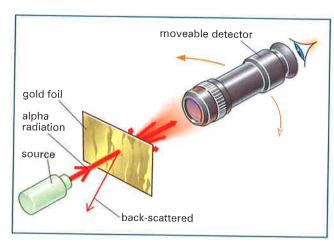
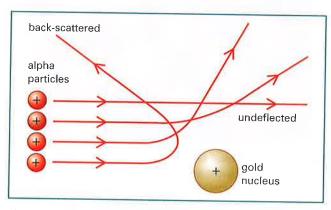



Figure 22.5 The experiment to show alpha particle scattering by a gold foil, also now known as Rutherford scattering. Alpha particles from the source on the left strike the gold foil. Most pass straight through, but a few – about one in 8000 – are scattered back towards the source. (The experiment was performed in a vacuum chamber as air would have absorbed the alpha particles.)

ball-bearing buried inside the plum pudding. What was going on?

Rutherford realised that the answer was to do with static electricity. Alpha particles are positively charged. If they are repelled back from the gold foil, it must be by another positive charge. If only a few were repelled, it was because the positive charge of the gold atoms was concentrated in a tiny space within each atom. Most alpha particles passed straight through because they never went near this concentration of charge (see Figure 22.6). This speck of concentrated positive charge, at the heart of every atom, is what we now call the atom's *nucleus*.

Figure 22.6 Most alpha particles pass straight through the gold foil, because they do not pass close to the atomic nucleus. The closer they get to the nucleus, the more they are deflected or scattered. Only those which score a 'direct hit' are reflected straight back.

In later years, Rutherford often spoke of the surprising results of the alpha scattering experiment. He said:

'It was quite the most incredible event that ever happened to me in my life. It was as if you fired a fifteen-inch artillery shell at a piece of tissue paper and it came back and hit you.'

A sense of scale

Rutherford was able to analyse the results from Geiger and Marsden's experiment to work out just how big the nucleus of a gold atom was. An atom is small (about $10^{-10}\,\mathrm{m}$ across) but its nucleus is very much smaller (about $10^{-15}\,\mathrm{m}$ in diameter). Around the nucleus travel the electrons. They are even tinier than the nucleus. And the rest of the atom is simply empty space.

It is hard to imagine these relative sizes. Try picturing a glass marble about 1 cm in diameter, placed at the centre of a football pitch, to represent the nucleus of an atom. Then the electrons are like tiny grains of dust, orbiting the nucleus at different distances, right out to the edge of the football ground.

It is even harder to imagine, when you stub your toe on a rock, that the atoms of the rock (and your toe) are almost entirely empty space!

A successful model

Rutherford's picture of the atom rapidly gained acceptance among scientists. It gave a clear explanation of the alpha particle scattering experiment, and further tests with other metals confirmed Rutherford's ideas. Thomson had the idea that the atom was made of many electrons spinning in such a way that they stuck together. This was a rather unclear model, and it was swept away by Rutherford's simpler picture.

Rutherford's model also allowed scientists to think about other questions. Chemists wanted to know how atoms bonded together. Physicists wanted to understand why some atoms are unstable and emit radiation. How were X-rays produced? These were all questions to which we now have good answers, and Rutherford's discovery of the atomic nucleus did a lot to help answer them.

Today, practising scientists have rather different ideas about atoms. They want to calculate many

different quantities, and so models of the atom are much more mathematical. Quantum theory, developed not long after Rutherford's work, made the atom seem like a much fuzzier thing, not a collection of little spheres orbiting around each other. However, the important thing about a model is that it should help us to understand things better, and help us to make new predictions, and Rutherford's model of the nuclear atom has certainly done that.

Questions

- **22.1** Explain why, in Geiger and Marsden's experiment, some alpha particles were 'back-scattered' when they came near to the nucleus of a gold atom.
- **22.2** Explain why only a very few alpha particles were back-scattered.
- **22.3** Think about the plum pudding model of the atom.
 - a What are the plums?
 - **b** What is the pudding?
- **22.4** In the 'solar system' model of the atom, what force holds the electrons in their orbits around the nucleus?

22.2 Protons, neutrons and electrons

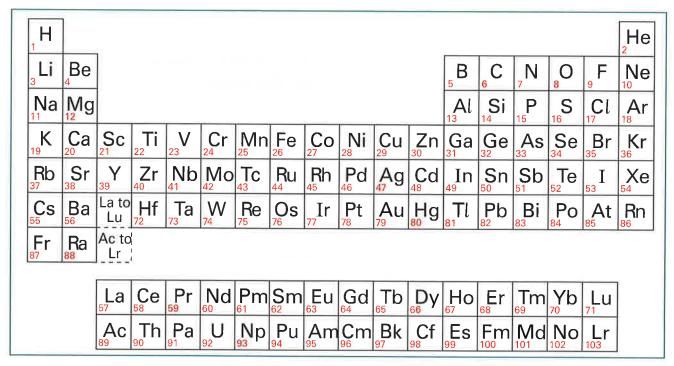
Nowadays, we know that the atomic nucleus is made up of two types of particle, **protons** and **neutrons**. The protons carry the positive charge of the nucleus, while the neutrons are neutral. Negatively charged **electrons** orbit the positively charged nucleus. Protons and neutrons have similar masses, and they account for most of the mass of the atom (because electrons are so light). Together, protons and neutrons are known as **nucleons**.

Table 22.1 summarises information about the masses and charges of the three sub-atomic particles. The columns headed 'Relative charge' and 'Relative mass' give the charge and mass of each particle compared to that of a proton. It is much easier to remember these values, rather than the actual values in coulombs (C) and kilograms (kg).

Particle	Position	Charge/C	Relative charge	Mass / kg	Relative mass
proton	in nucleus	+1.6×10 ⁻¹⁹	+1	1.67×10 ⁻²⁷	1
neutron	in nucleus	0	0	1.67×10 ⁻²⁷	1
electron	orbiting nucleus	-1.6×10 ⁻¹⁹	-1	9.11×10 ⁻³¹	$\frac{1}{1836} (approx.0)$

Table 22.1 Charges and masses of the three sub-atomic particles.

Atoms and elements


Once the particles that make up atoms were identified, it was much easier to understand the *Periodic Table* of the elements (Figure 22.7). This shows the elements in order, starting with the lightest (hydrogen, then helium) and working up to the heaviest. In fact, it is not the masses of the atoms that determine the order in which they appear, but the *number of protons* in the nucleus of each atom. Every atom of hydrogen has one proton in its nucleus, so hydrogen is element number 1. Every helium atom has two protons, so helium is element number 2, and so on.

Each element has its own symbol, consisting of one or two letters, such as H for hydrogen, and He for helium. Sometimes, the symbol for an atom may be written with two numbers in front of it, one above the other, such as:

⁴₂He

This represents an atom of helium. The bottom number tells us that there are 2 protons in the nucleus of an atom of helium, and the top number tells us that there is a total of 4 nucleons in the nucleus of an atom of helium. (From this, it is simple to work out that there must be 2 neutrons in the nucleus.)

We can write the general symbol for an element X with its **proton number** *Z*, which is the number of protons in the nucleus, and **nucleon number** *A*, which

Figure 22.7 The Periodic Table of the elements is a way of organising what we know about the different elements, based on their atomic structures. The elements are arranged in order according to the number of protons in the nucleus (their proton number *Z*).

is the number of nucleons (protons plus neutrons) in the nucleus, as follows.

The nucleus of an atom of element X is written as

AX

where Z is the proton number and A is the nucleon number.

A neutral atom of element X will also have Z electrons orbiting the nucleus. There are just over a hundred different elements X, all of which have different possible combinations of Z and A, each giving a different type of nucleus. Each type is called a **nuclide**. (Sometimes physicists refer to nuclides as *nuclear species*, as if all the different species make up a 'zoo' of nuclei.)

Questions

- **22.5 a** Which particles make up the nucleus of an atom?
 - **b** Which particles orbit around the nucleus?
- **22.6** A particular atom of oxygen is represented by
 - a What is its nucleon number?
 - **b** What is its proton number?
- **22.7** A particular atom of lead (symbol Pb) contains 82 protons and 128 neutrons. Write down the full symbol for this atom.
- 22.8 How many protons, neutrons and electrons are there in a neutral silver atom, with the symbol $^{107}_{47}$ Ag?
- **22.9** How many times greater is the mass of a proton than the mass of an electron?

Elements and isotopes

It is the proton number Z that tells us which element an atom belongs to. For example, a small atom with just 2 protons in its nucleus (Z=2) is a helium atom. A much bigger atom with 92 protons in its nucleus is a uranium atom, because uranium is element 92.

From *Z* and *A* you can work out a third number, the **neutron number** *N*, which is the number of neutrons in the nucleus.

proton number + neutron number
= nucleon number
$$Z + N = A$$

The atoms of all elements exist in more than one form. For example, Table 22.2 shows three types of hydrogen atom. Each has just one proton in its nucleus, but they have different numbers of neutrons (0, 1 and 2). They are described as different **isotopes** of hydrogen.

- ◆ The different isotopes of an element all have the same chemical properties, but those with a greater number of neutrons are heavier.
- The different isotopes of an element all have the same number of protons but different numbers of neutrons in their nuclei.

Figure 22.8 shows atoms of two isotopes of helium, ${}_{2}^{4}$ He (the commonest isotope) and ${}_{2}^{3}$ He (a lighter and much rarer isotope). Each has two protons in the nucleus and two electrons orbiting it, but the lighter isotope ${}_{2}^{3}$ He has only one neutron.

Symbol for isotope	Proton number <i>Z</i>	Neutron number <i>N</i>	Nucleon number A
¦Η	1	0	1
² ₁ H	1	1	2
³ H	1	2	3
Symbol for isotope	Proton number <i>Z</i>	Neutron number <i>N</i>	Nucleon number A
²³⁵ ₉₂ U	92	143	235
²³⁸ ₉₂ U	92	146	238

Table 22.2 Three isotopes of hydrogen (top) and two isotopes of uranium (bottom).



Figure 22.8 These drawings represent two isotopes of helium.

Isotopes at work

For most chemical elements, at least one isotope is stable; however, other isotopes may be unstable. By this we mean that they undergo **radioactive decay**, emitting **radiation** as they change from one element to another. In Chapter 23, you will learn about how this can be put to practical use.

Questions

- **22.10 a** What is the same for the atoms of two different isotopes of an element?
 - **b** What is different for them?
- **22.11** Table **22.3** lists the proton and nucleon numbers of six different nuclides.
 - **a** Copy and complete the table by filling in the empty spaces.
 - **b** Which **three** nuclides are isotopes of one element?
 - c Which two nuclides are isotopes of another element?
 - **d** Use the Periodic Table of the elements shown earlier in Figure 22.7 to identify the three elements in Table 22.3.

Nuclide	Proton number Z	Neutron number <i>N</i>	Nucleon number A
Nu-1	6	6	
Nu-2		6	13
Nu-3	7		14
Nu-4		8	14
Nu-5		6	11
Nu-6		7	13

 Table 22.3
 Proton and nucleon numbers of nuclides, for question 22.11.

Summary

You should know:

- the nuclear structure of the atom
- about Rutherford's alpha particle scattering experiment
 - about the composition and representation of nuclei (⁴/_ZX)
- about the isotopes of elements.

End-of-chapter questions

- 1 Copy one of the diagrams of an atom shown earlier in Figure 22.8. Add the following labels to your drawing: electron neutron proton nucleus
- A specific nucleus may be represented like this: ${}_{Z}^{A}X$. Copy and complete the table to explain what the three symbols mean.

Symbol	Name	What it tells us
X		
Z		
A		

- 3 Write a word equation linking the numbers of protons, neutrons and nucleons in a nucleus.
- 4 Atoms of an element can be different isotopes of that element. Copy and complete the sentences below, writing either the words *the same number* or the words *different numbers* in the gaps.
 - a Two isotopes of an element have of neutrons in their nuclei.
 - **b** Two isotopes of an element have of protons in their nuclei.
 - **c** Two isotopes of an element have of nucleons in their nuclei.
- 5 Copy and complete the following paragraph, choosing the best word from each pair.

In Rutherford's experiment, fast-moving *alpha particles / protons* were *absorbed / deflected* as they passed through a *thick / thin* gold foil. Some were back-scattered, which showed that the *momentum / mass* and *positive / negative* charge of the atom were concentrated in a tiny space at the *surface / centre* of the atom.

- 6 Diamond is a form of carbon. It is made up (almost entirely) of carbon-12 atoms. The symbol for the nucleus of a carbon-12 atom is ${}^{12}_{6}$ C.
 - a How many protons are there in a carbon-12 atom?

[1] [1]

b How many neutrons are there in a carbon-12 atom?

[1]

c How many electrons are there in a neutral carbon-12 atom?

[*]

- 7 A particular atom of gold (chemical symbol Au) contains 79 protons and 118 neutrons.
 - a How many nucleons are there in the nucleus of this atom?

[2]

b Write the symbol for this nuclide in the form ${}_{Z}^{A}X$.

[2]

- 8 A particular isotope of potassium is represented by the symbol $_{19}^{39}$ K.
 - a What is the proton number of this isotope?

[1]

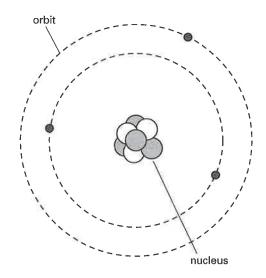
b What is the nucleon number of this isotope?

- [1]
- c A second isotope of potassium has one more neutron in its nucleus. Write down its symbol in the form $\frac{A}{Z}X$.
- [2]

- Ernest Rutherford devised an experiment in which alpha particles were directed at a thin gold foil. The results of this experiment showed that every atom has a nucleus, and the 'plum pudding' model of the atom had to be discarded.
 - a Consider these three particles: alpha particle, gold nucleus and electron.
 - What type of charge (positive or negative) does each have? [3]

[2]

[2]


[1]

[1]

[1]

[1]

- List the three particles in order, from smallest to largest. [3]
- **b** Describe the 'plum pudding' model of the atom.
- c Draw a diagram to show how an alpha particle could be scattered backwards by a gold atom, towards the source from which it came.
- **d** Explain why most alpha particles passed straight through the gold foil. [2]
- 10 The diagram represents a neutral lithium atom. All the particles in the atom are shown on the diagram.

- a Use the diagram to help you answer the following questions.
 - How many electrons does this atom have?
 - ii What is the value of the proton number of this atom? [1]
 - iii How many neutrons does the atom have?
 - iv What is the value of the nucleon number of this atom?
- **b** Copy the diagram below, replacing the boxes with appropriate numbers, to represent this atom of lithium in nuclide notation.

[Cambridge IGCSE® Physics 0625/23, Question 12, October/November, 2011]

- 11 a The charges on the particles in an atom may be represented by
 - 0 or +1 or -

The masses of the particles in an atom may be represented by

0 or *m* or 2000*m*

Using these choices, copy and complete the table.

[4]

Particle	Charge	Mass
electron	-1	m
neutron		
proton		

b How many of each of these particles are there in a neutral atom of $^{238}_{92}$ U?

[3]

- i electrons
- ii neutrons
- iii protons

[Cambridge IGCSE® Physics 0625/23, Question 11, October/November, 2012]

23

Radioactivity

In this chapter, you will find out:

- about background and artificial radiation
- how radiation is detected
- the nature of alpha (α), beta (β) and gamma (γ) radiations
- how to interpret nuclear equations that represent decay
- how radiation behaves in electric and magnetic fields
 - about the ionising and penetrating behaviour of radiation
 - how to calculate radioactive half-life
- how radioactive substances are used.

Making sense of radioactivity

People make jokes about radioactivity: if you go on a school visit to a nuclear power station, you will come back with two heads; if you have radiation treatment in hospital, you will glow in the dark. There is a small element of truth here, but much fear of the unknown.

When radioactivity was discovered, people became excited, and doctors claimed it had health-promoting effects. They added radioactive substances to chocolate, bread, toothpaste and water (Figure 23.1). Even today, some Alpine spas offer residents the chance to breathe radioactive air in old mine tunnels.

The use of radioactive substances by the most technologically advanced countries has had some very damaging effects. Two atomic bombs were dropped on the Japanese cities of Hiroshima and Nagasaki at the end of the Second World War. Many others have

Figure 23.1 In the 1930s, you could buy bulbs of radioactive radon gas like this to dissolve in your drinking water.

been tested (Figure 23.2). The positive side of our use of radioactive materials is less obvious, but millions of people who would once have died of cancer are alive thanks to radiation therapy (see later).

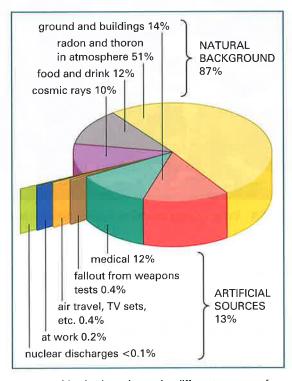
Radioactive materials produce radiation. We have eyes to see light, and we can detect infrared radiation with our skin. But we have no organ for detecting the radiation from radioactive materials that is all around us. We make little use of radioactive materials in our everyday lives, so they remain unfamiliar. We learn about them from a teacher, who handles radioactive samples with great care. It is not surprising that we are cautious, if not downright scared, when the topic of radioactivity is raised.

In this chapter, we will look at radioactive substances and the radiation they produce, and discuss how they can be used safely.

Figure 23.2 An atomic bomb test like this releases large quantities of radioactive materials into the environment.

23.1 Radioactivity all around

We need to distinguish between two things: radioactive substances and the radiation that they give out.


Many naturally occurring substances are radioactive.

Usually these are not very concentrated, so that they do not cause a problem. There are two ways in which radioactive substances can cause us problems:

- If a radioactive substance gets inside us, its radiation can harm us. We say that we have been contaminated.
- If the radiation they produce hits our bodies, we say that we have received a dose of radiation. We have been irradiated.

In fact, we are exposed to low levels of radiation all the time – this is known as **background radiation**. In addition, we may be exposed to radiation from artificial sources, such as the radiation we receive if we have a medical X-ray.

Figure 23.3 shows the different sources that contribute to the average dose of radiation received by people in the UK. It is divided into natural background radiation (about 87%) and radiation from artificial

Figure 23.3 This pie chart shows the different sources of radiation and how they contribute to the average dose of radiation received each year by someone living in the UK. The main division is between natural background radiation and radiation from artificial sources.

sources (about 13%). We will look at these different sources in turn.

Sources of background radiation

The air is radioactive. It contains a radioactive gas called *radon*, which seeps up to the Earth's surface from radioactive uranium rocks underground. Because we breathe in air all the time, we are exposed to radiation from this substance. This contributes about half of our annual exposure. (This varies widely from country to country, and from one part of a country to another, depending on how much uranium there is in the underlying rocks.)

The ground contains radioactive substances. We use materials from the ground to build our houses, so we are exposed to radiation from these.

Our food and drink is also slightly radioactive. Living things grow by taking in materials from the air and the ground, so they are bound to be radioactive. Inside our bodies, our food then exposes us to radiation.

Finally, radiation reaches us from space in the form of cosmic rays. Some of this radiation comes from the Sun, some from further out in space. Most cosmic rays are stopped by the Earth's atmosphere. If you live up a mountain, you will be exposed to more radiation from this source.

Because natural background radiation is around us all the time, we have to take account of it in experiments. It may be necessary to measure the background level and then to subtract it from experimental measurements.

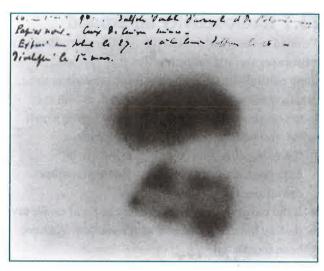
Sources of artificial radiation

Most radiation from artificial sources comes from medical sources. This includes the use of X-rays and gamma rays for seeing inside the body, and the use of radiation for destroying cancer cells. There is always a danger that exposure to such radiation may trigger cancer. Medical physicists are always working to reduce the levels of radiation used in medical procedures. Overall, many more lives are saved than lost through this beneficial use of radiation.

Today, most nuclear weapons testing is done underground. In the past, bombs were detonated on land (see Figure 23.2 earlier) or in the air, and this contributed much more to the radiation dose received by people around the world.

If you fly in an aircraft, you are high in the atmosphere. You are exposed to more cosmic rays. This is not a serious problem for the occasional flier, but airline crews have to keep a check on their exposure.

Many people, such as medical radiographers and staff in a nuclear power station, work with radiation. Overall, this does not add much to the national average dose, but for individuals it can increase their dose by up to 10%.


Finally, small amounts of radioactive substances escape from the nuclear industry, which processes uranium for use as the fuel in nuclear power stations, and handles the highly radioactive spent fuel after it has been used.

Detecting radiation

Radioactivity was discovered by a French physicist, Henri Becquerel, in 1896. He had been investigating some phosphorescent rocks - rocks that glow for a while after they have been left under a bright light. His method was to leave a rock on his window sill in the light. Then he put it in a dark drawer on a piece of photographic film to record the light it gave out. He suspected that rocks containing uranium might be good for this. But he discovered something even more dramatic: the photographic film was blackened even when the rock had not been exposed to light. He realised that some kind of invisible radiation was coming from the uranium. What was more, the longer he left it, the darker the photographic film became. Uranium gives out radiation all the time, without any obvious supply of energy.

Becquerel had discovered a way of revealing the presence of invisible radiation, using photographic film. This method is still used today. One of his first photographs of radiation is shown in Figure 23.4.

It takes a while to expose and develop a photographic film. For a quicker measurement of radiation, we can use a Geiger counter. The detector is a Geiger–Muller tube, which is held close to a suspected source of radiation (Figure 23.5). The radiation enters the tube, which produces an electrical pulse every time it detects any radiation. The electronic counter (in the man's left hand) adds up these pulses. It can give a click or beep for each pulse. In the photograph, the Geiger counter is being used to check the radiation levels of moss gathered from a mountainside in France. Regular

Figure 23.4 One of Henri Becquerel's first photographic records of the radiation produced by uranium. The two black blobs are the outlines of two crystals containing uranium. To show that the radiation would pass through metal, he placed a copper cross between one of the crystals and the photographic film. You can see the 'shadow' of the cross on the photograph. The writing is Becquerel's; the last line says 'développé le 1er mars' – developed on 1st March (1896).

Figure 23.5 Using a Geiger counter to monitor radiation levels.

checks are made on samples of air, soil, vegetation and water for 20 km around nuclear power stations. Other analytical equipment can also be seen on the table.

The randomness of radioactive decay

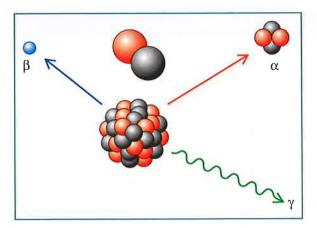
If you listen to the clicks or beeps of a Geiger counter, you may notice that it is impossible to predict when the next sound will come. This is because radioactive decay is a **random process**. If you study a sample of a radioactive material, you cannot predict when the next atom will decay. Atoms decay randomly over time.

Similarly, it is impossible to point at an individual atom and say that it will be the next one to decay. If an atom on the left of the sample has just decayed, we cannot predict that an atom on the right of the sample will be the next to decay.

To sum up this randomness, we say that radioactive decay occurs randomly over space and time.

Activity 23.1 Observing radioactivity

Watch some demonstrations that illustrate the properties of radiation



- **23.1** What is the biggest contributor to background radiation?
- 23.2 Why are people who live high above sea level likely to be exposed to higher levels of background radiation?
- **23.3** What fraction of our annual average dose of radiation is from artificial sources?
- **23.4** List three sources of exposure to artificial radiation.
- **23.5** Name **two** methods of detecting radiation from radioactive materials.

23.2 The microscopic picture

To understand the nature of radioactivity, we need to picture what is going on at a microscopic level, on the level of atoms and nuclei. Two questions we need to answer are: Why are some atoms radioactive while others are not? What is the nature of the radiation they produce?

Radiation is emitted by the nucleus of an atom (Figure 23.6). We say that the nucleus is unstable. An unstable nucleus emits radiation in an attempt to become more stable. This is known as **radioactive decay**. Fortunately, most of the atoms around us have stable nuclei. When the Earth formed, about 4500 million years ago, there were many more radioactive

Figure 23.6 Radiation comes from the nucleus of a radioactive atom.

atoms around. However, as those millions of years have passed, most have decayed to become stable. In the distant past, the level of background radiation was much higher than it is today.

Three types of radiation

There are three types of radiation emitted by radioactive substances (Table 23.1). These are named after the first three letters of the Greek alphabet, alpha (α), beta (β) and gamma (γ). Alpha and beta are particles; gamma is a form of electromagnetic radiation (see Chapter 15).

- An alpha particle (α-particle) is made up of two protons and two neutrons. (This is the same as the nucleus of a helium atom, ⁴₂He.) Because it contains protons, it is positively charged.
- A beta particle (β-particle) is an electron. It is not one of the electrons that orbit the nucleus – it comes from *inside the nucleus*. It is negatively charged, and its mass is much less than that of an alpha particle.
- A gamma ray (γ-ray) is a form of electromagnetic radiation. We can think of it as a wave with a very short wavelength (similar to an X-ray, but even more energetic). Alternatively, we can picture it as a 'photon', a particle of electromagnetic energy.

An atom of a radioactive substance emits either an alpha particle or a beta particle. In addition, it may emit some energy in the form of a gamma ray. The gamma ray is usually emitted at the same time as the alpha or beta, but it may be emitted some time later.

Alpha particles have a much greater mass than beta particles, so they travel more slowly. Gamma rays travel at the speed of light.

Name	Symbol	Made of	Mass	Charge	Speed/m/s
alpha	α or ⁴ ₂ He	2 protons + 2 neutrons	approx. (mass of proton) \times 4	+2	~3×10 ⁷
beta	β or _0e	an electron	approx. (mass of proton) 1840	-1	~2.9×10 ⁸
gamma	γ	photon of electromagnetic radiation	0	0	3×10 ⁸

Table 23.1 Three types of radiation produced by naturally occurring radioactive substances. To these we should add neutrons and positively charged beta radiation, produced by some artificial radioactive substances.

When an atom of a radioactive substance decays, it becomes an atom of another element. This is because, in alpha and beta decay, the number of protons in the nucleus changes.

Questions

- **23.6 a** Which radiation from a radioactive substance is positively charged?
 - **b** Which radiation from a radioactive substance is negatively charged?
- **23.7** What type of sub-atomic particle is a β -particle?
- **23.8** Which type of radiation is a form of electromagnetic radiation?
- **23.9 a** Which radiation travels fastest, alpha, beta or gamma?
 - **b** Which radiation travels most slowly?

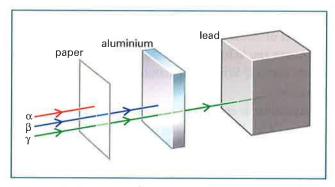
Energy released

Radioactive substances release energy when they decay. Before they decay, this energy is stored in the nucleus of the atom. When it is released, it is in two forms:

- An alpha or beta particle is fast-moving. The nucleus that has emitted it recoils. Both particles have kinetic energy.
- A gamma ray transfers energy as **electromagnetic** radiation.

Penetrating power

When physicists were trying to understand the nature of radioactivity, they noticed that radiation can pass through solid materials. (In Figure 23.4, we saw how


Becquerel showed that some of the radiation from uranium could pass through copper.) Different types of radiation can penetrate different thicknesses of materials.

- ◆ Alpha particles are the most easily absorbed. They can travel about 5 cm in air before they are absorbed. They are absorbed by a thin sheet of paper.
- Beta particles can travel fairly easily through air or paper. But they are absorbed by a few millimetres of metal.
- Gamma radiation is the most penetrating. It takes several centimetres of a dense metal like lead, or several metres of concrete, to absorb most of the gamma radiation.

These ideas about **penetrating power** are represented in Figure 23.7.

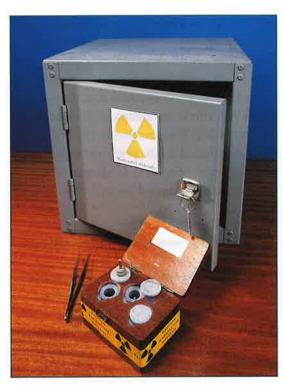
lonisation

When radiation passes through air, it may interact with air molecules, knocking electrons from them, so that the air molecules become charged. We say that the air

Figure 23.7 The penetrating power of radiation is greatest for gamma radiation and least for alpha radiation. This is related to their ability to ionise the materials they are passing through.

molecules have become ionised. The relative ionising effects are as follows:

- alpha particles are the most ionising
- gamma radiation is the least ionising.


Because the radiation from radioactive substances causes **ionisation** of the materials that absorb it, it is often known as **ionising radiation**.

Safe handling

Knowing about the radiation produced by radioactive materials tells us how to handle them as safely as possible. Radioactive sources should be stored in a container that will absorb as much as possible of the radiation coming from them. Lead is a good material for this, as it is a strong absorber of all three types of radiation.

Figure 23.8 shows a storage box used for keeping radioactive sources in a school laboratory. Each source is kept in its own lead-lined compartment, and the whole box should be stored in a metal cabinet with a hazard warning sign.

When sources are not in their protective container, they should be handled carefully. To avoid contamination, tongs can be used so that the user does

Figure 23.8 A storage box for laboratory radioactive sources, and the metal cabinet in which it is stored when not in use.

not come into direct contact with the source. During any experiment, the user should stand at a safe distance from the source.

Activity 23.2 Safety first

Observe and explain how radioactive materials can be handled safely.

Radioactive decay equations

We can represent any radioactive decay by an equation using the notation explained in Chapter 22 (section 22.2).

Here is an example of an equation for alpha decay:

$$^{241}_{94}$$
Am $\rightarrow ^{237}_{92}$ U + $^{4}_{2}$ He + energy

This represents the decay of americium-241, the isotope used in smoke detectors. It emits an alpha particle (represented as a helium nucleus) and becomes an isotope of uranium. Notice that the numbers in this equation must balance, because we cannot lose mass or charge. So:

nucleon numbers:
$$241 \longrightarrow 237 + 4$$

proton numbers: $94 \longrightarrow 92 + 2$

Here is an example of an equation for **beta decay**:

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e + energy$$

This is the decay that is used in radiocarbon dating. A carbon-14 nucleus decays to become a nitrogen-14 nucleus. (The beta particle, an electron, is represented by $_{-1}^{0}$ e.) If we could see inside the nucleus, we would see that a single neutron has decayed to become a proton. So:

$${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e$$

For each of these two beta decay equations, you should be able to see that the nucleon numbers and proton numbers are balanced. We say that, in radioactive decay, nucleon number and proton number are *conserved*.

Question

23.10 The equation below represents the decay of a polonium nucleus to form a lead nucleus. An alpha particle (α) is emitted.

$$^{210}_{84}$$
Po $\rightarrow ^{206}_{82}$ Pb + + energy

- a Copy and complete the equation.
- **b** Show that proton numbers are equal on each side of the equation.
- **c** Show that nucleon numbers are equal on each side of the equation.

How ionisation happens

Consider an alpha particle passing through the air. An alpha particle is the slowest moving of all the three radiations and has the largest charge. As the alpha particle collides with an air molecule, it may knock an electron from the air molecule, so that it becomes charged. The alpha particle loses a little of its energy. It must ionise thousands of molecules before it loses all of its energy and comes to a halt. Nonetheless, alpha radiation is the most strongly ionising radiation.

A beta particle can similarly ionise air molecules. However, it is less ionising for two reasons: its charge is less than that of an alpha particle, and it is moving faster, so that it is more likely to travel straight past an air molecule without interacting with it. This is why beta radiation can travel further through air without being absorbed.

Gamma radiation is uncharged and it moves fastest of all, so it is the least readily absorbed in air, and therefore is the least ionising. Lead is a good absorber because it is dense (its atoms are packed closely together), and its nuclei are relatively large, so they present an easy target for the gamma rays.

You should be able to see the pattern linking ionising power and absorption:

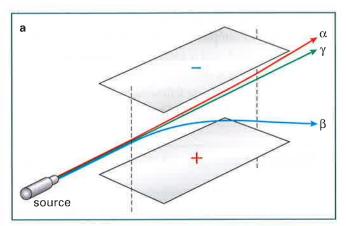
- Alpha radiation is the most strongly ionising, so it is the most easily absorbed and the least penetrating.
- Gamma radiation is the least strongly ionising, so it is the least easily absorbed and the most penetrating.

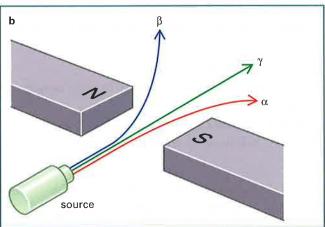
X-rays also cause ionisation in the materials they pass through, and so they are also classed as ionising

radiation. X-rays are very similar to gamma rays. But X-rays usually have less energy (longer wavelength) than gamma rays, and they are produced by X-ray machines, stars and so on, rather than by radioactive substances.

When something has been exposed to radiation, we say that it has been *irradiated*. Although it absorbs the radiation, it does *not* itself become radioactive. Things only become radioactive if they absorb a radioactive substance. So you do not become radioactive if you absorb cosmic rays (which you do all the time!). But you *do* become radioactive if you consume a radioactive substance – coffee, for example, contains measurable amounts of radioactive potassium.

Deflecting radiation


How can we tell the difference between these three types of radiation? One method is to see how they behave in electric and magnetic fields.


Because they have opposite charges, alpha and beta particles are deflected in opposite directions when they pass through an electric field (Figure 23.9a). Alpha particles are attracted towards a negatively charged plate, while beta particles are attracted towards a positively charged plate. Gamma rays are not deflected because they are uncharged.

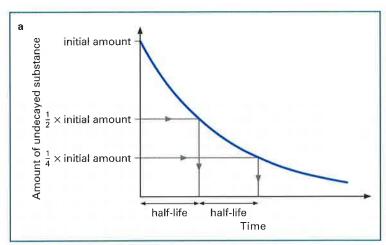
Alpha and beta particles are charged, so, when they move, they constitute an electric current. Because of their opposite signs, the forces on them in a magnetic field are in opposite directions (Figure 23.9b). This is an example of the motor effect (Chapter 20). The direction in which the particles are deflected can be predicted using Fleming's left-hand rule. As in an electric field, gamma rays are not deflected because they are uncharged.

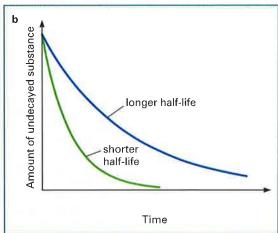
Questions

- **23.11** Name four types of ionising radiation.
- **23.12** Why are gamma rays undeflected in a magnetic field?
- **23.13 a** Which type of radiation from a radioactive source is the most highly ionising?
 - **b** What does this tell you about how easily it is absorbed?

Figure 23.9 Alpha and beta radiations are deflected in opposite directions: **a** in an electric field, and **b** in a magnetic field.

23.3 Radioactive decay


Henri Becquerel discovered the radioactivity of uranium. What surprised him was that uranium appears to be able to emit radiation endlessly, without ever running out of energy. This would go against the principle of conservation of energy. What he did not realise was that the uranium he used was undergoing very gradual *radioactive decay*. The problem was that uranium decays very slowly, so that, even if Becquerel had carried on with his experiments for a thousand years, he would not have noticed any decrease in the activity of his samples. In fact, the uranium he was working with had been decaying gradually ever since the Earth formed, over 4500 million years ago.


All radioactive substances decay with the same pattern, as shown in Figure 23.10a. The graph shows that the amount of a radioactive substance decreases rapidly at first, and then more and more slowly. In fact, because the graph tails off more and more slowly, we cannot say when the last atoms will decay. Different radioactive substances decay at different rates, some much faster than others, as shown in Figure 23.10b.

Because we cannot say when the substance will have entirely decayed, we have to think of another way of describing the rate of decay. As shown on the graph in Figure 23.10a, we identify the half-life of the substance, which we describe as follows.

The half-life of a radioactive substance is the average time taken for half of the atoms in a sample to decay.

Uranium decays slowly because it has a very long halflife. The radioactive samples used in schools usually have half-lives of a few years, so that they have to be replaced

Figure 23.10 a A decay graph for a radioactive substance. A curve of this shape is known as an exponential decay graph. **b** A steep graph shows that a substance has a short half-life.

once in a while. Some radioactive substances have halflives that are less than a microsecond. No sooner are they formed than they decay into something else.

Explaining half-life

After one half-life, half of the atoms in a radioactive sample have decayed. However, this does not mean that all of the atoms will have decayed after two half-lives. From the graph of Figure 23.10a, you can see that one-quarter will still remain after two half-lives. Why is this?

Figure 23.11 shows one way of thinking about what is going on. Imagine that we start with a sample of 100 undecayed atoms of a radioactive substance (white circles in Figure 23.11a). They decay randomly (black circles in Figure 23.11b–d) – each undecayed atom has a 50:50 chance of decaying in the course of one half-life. So, looking at the panels in Figure 23.11, we can describe the decay like this:

- **a** At the start, there are 100 undecayed atoms.
- **b** After one half-life, a random selection of 50 atoms has decayed.
- c During the next half-life, a random selection of half of the remaining 50 atoms decays, leaving 25 undecayed.
- **d** During the third half-life, half of the remaining atoms decay, leaving 12 or 13. (Of course, you cannot have half an atom.)

So the number of undecayed atoms goes 100–50–25–12–... and so on. It is because radioactive atoms decay in a random fashion that we get this pattern of decay. Notice that, just because one atom has not decayed in the first half-life does not mean that it is more likely to decay in the next half-life. It has no way of remembering its past.

Usually, we cannot measure the numbers of atoms in a sample. Instead, we measure the **count rate** using a Geiger

counter or some other detector. We might also determine the **activity** of a sample. This is the number of atoms that decay each second, and is measured in **becquerels (Bq)**. An activity of 1 Bq is one decay per second. The count rate and activity both decrease following the same pattern as the number of undecayed atoms.

Worked example 23.1

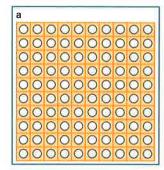
A sample of radioactive element X has an activity of 240 Bq. If the half-life of X is 3 years, what will its activity be after 12 years?

Step 1: Calculate the number of half-lives in 12 years.

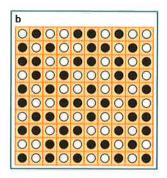
$$\frac{12 \text{ years}}{3 \text{ years}} = 4 \text{ half-lives}$$

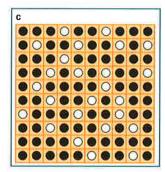
Hence we want to know the activity of the sample after 4 half-lives.

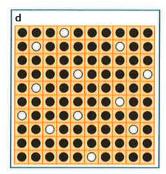
Step 2: Calculate the activity after 1, 2, 3 and 4 half-lives (divide by 2 each time).


initial activity =
$$240 \, \text{Bq}$$

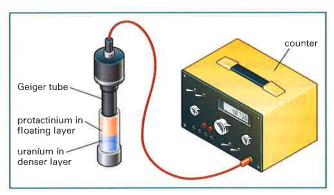
activity after 1 half-life = $120 \, \text{Bq}$
activity after 2 half-lives = $60 \, \text{Bq}$
activity after 3 half-lives = $30 \, \text{Bq}$
activity after 4 half-lives = $15 \, \text{Bq}$

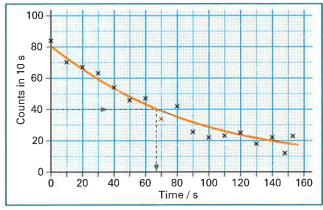

So the activity of the sample has fallen to 15 Bq after 12 years.


(Another way to do this is as follows. We have found that 12 years is 4 half-lives, so we need to divide the initial activity by 2⁴, which is 16, giving:


$$\frac{240\,\mathrm{Bq}}{16} = 15\,\mathrm{Bq}$$

So the activity is 15 Bq after 12 years, as before.)




Figure 23.11 The pattern of radioactive decay comes about because the decay of individual atoms is random. Half of the atoms decay during each half-life, but we have no way of predicting which individual atoms decay.

Measuring a half-life

Figure 23.12 shows how the half-life of a particular substance, protactinium-234, is measured in the lab. After the bottle has been shaken, the upper layer of liquid contains protactinium, which emits beta radiation as it decays. Because its half-life is 70 s, the count rate decreases quickly. The number of counts in successive intervals of 10 s is recorded. A graph is plotted of number of counts in each interval against time, as in Figure 23.13. The half-life can then be deduced from the decay graph, as shown.

Figure 23.12 A practical arrangement for measuring the half-life of the radioactive decay of protactinium-234.

Figure 23.13 The count rate for the radioactive decay of protactinium-234 decreases rapidly. The points show some experimental scatter, so a smooth curve is drawn. From this, the half-life can be deduced. Here the initial count rate is 80. Half of this is 40. Reading across from this value to the curve and then down to the time axis gives the half-life as 67 s.

Questions

- **23.14** In an answer, a student wrote: 'The half-life of a radioactive substance is the time taken for half of the atoms in a sample to decay.'

 What word is missing from that definition of half-life?
- **23.15** A sample of a radioactive substance contains 200 undecayed atoms. How many will remain undecayed after 3 half-lives?
- **23.16** The half-life of radioisotope X is 10 days. A sample gives an initial count rate of 440 counts per second. What will be the count rate after 30 days?
- 23.17 Radioisotope Y has a half-life of 2000 years. How long will it take the activity of a sample of Y to decrease to one-eighth of its initial value?

23.4 Using radioisotopes

Any element comes in several forms or isotopes (see 'Elements and isotopes' at the end of section 22.2). Some may be stable, but others are unstable – in other words, they are radioactive. For example, carbon has two stable isotopes (${}^{12}_{6}\text{C}$ and ${}^{13}_{6}\text{C}$), but ${}^{14}_{6}\text{C}$ is an unstable isotope. Unstable (radioactive) isotopes are known as **radioisotopes**.

Effects of radioisotopes on cells

Safe handling of radioisotopes requires an understanding of how radiation affects cells. There are three ways in which radiation can damage living cells.

- ◆ An intense dose of radiation causes a lot of ionisation in a cell, which can kill the cell. This is what happens when someone suffers radiation burns. The cells affected simply die, as if they had been burned. If the sufferer is lucky and receives suitable treatment, the tissue may regrow.
- If the DNA in the cell nucleus is damaged, the mechanisms that control the cell may break down.
 The cell may divide uncontrollably and a tumour forms. This is how radiation can cause cancer.

• If the affected cell is a gamete (a sperm or egg cell), the damaged DNA of its genes may be passed on to future generations. This is how radiation can produce genetic mutations. Occasionally, a mutation can be beneficial to the offspring, but more usually it is harmful. A fertilised egg cell may not develop at all, or the baby may have some form of genetic disorder.

We are least likely to be harmed by alpha radiation coming from a source outside our bodies. This is because the radiation is entirely absorbed by the layer of dead skin cells on the outside of our bodies (and by our clothes). However, if an alpha source gets inside us, it can be very damaging, because its radiation is highly ionising. That is why radon and thoron gases are so dangerous. We breathe them into our lungs, where they irradiate us from the inside. The result may be lung cancer.

Today, we know more about radiation and the safe handling of radioactive materials than ever before. Knowing how to reduce the hazards of radiation means that we can learn to live safely with it and put it to many worthwhile purposes.

Radioisotopes at work

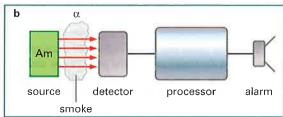
Now we will look at some of the many uses to which radioisotopes have been put. We will look at these uses in four separate groups:

- uses related to their different penetrating powers
- uses related to the damage their radiation causes to living cells
- uses related to the fact that we can detect tiny quantities of radioactive substances
- uses related to radioactive decay and half-life.

Uses related to penetrating power Smoke detectors

These are often found in domestic kitchens, and in public buildings such as offices and hotels. If you open a smoke detector to replace the battery, you may see a yellow and black radiation hazard warning sign (Figure 23.14a). The radioactive material used is americium-241, a source of alpha radiation. Figure 23.14b shows how it works.

 Radiation from the source falls on a detector. Since alpha radiation is charged, a small current flows in the detector. The output from the processing circuit is OFF, so the alarm is silent. • When smoke enters the gap between the source and the detector, it absorbs the alpha radiation. Now no current flows in the detector, and the processing circuit switches ON, sounding the alarm.


In this application, a source of alpha radiation is chosen because alpha radiation is easily absorbed by the smoke particles.

Thickness measurements

In industry, beta radiation is often used in measuring thickness. Manufacturers of paper need to be sure that their product is of a uniform thickness. To do this, beta radiation is directed through the paper as it comes off the production line. A detector measures the amount of radiation getting through. If the paper is too thick, the radiation level will be low and an automatic control system adjusts the thickness. The same technique is used in the manufacture of plastic sheeting.

Beta radiation is used in this application because alpha radiation would be entirely absorbed by the paper or plastic. Gamma radiation would hardly be affected, because it is the most penetrating.

Figure 23.14 a The inside of a smoke detector. The source of radiation is a small amount of americium-241. **b** Block diagram of a smoke detector. The alarm sounds when smoke absorbs the alpha radiation.

Medical diagnosis

The diagnosis of some diseases may be carried out using a source of gamma radiation. The patient is injected with a radioactive chemical that targets the problem area (it may accumulate in bone, for example). Then a camera detects the radiation coming from the chemical and gives an image of the tissue under investigation.

Fault detection

Fault detection in manufactured goods sometimes makes use of gamma rays. Figure 23.15 shows an example, where engineers are looking for any faults in some pipework. A photographic film is strapped to the outside of the pipe, and the radioactive source is placed on the inside. When the film is developed, it looks like an X-ray picture, and shows any faults in the welding.

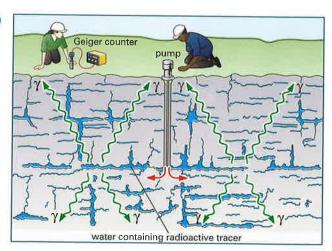
Uses related to cell damage Radiation therapy

The patient shown in Figure 23.16 is receiving radiation treatment as part of a cure for cancer. A source of gamma rays (or X-rays) is directed at the tumour that is to be destroyed. The source moves around the patient, always aiming at the tumour. In this way, other tissues receive only a small dose of radiation. Radiation therapy is often combined with chemotherapy, using chemical drugs to target and kill the cancerous cells.

Figure 23.15 Checking for faults in a metal pipe. The engineers are checking that no radiation is escaping from the pipe. The gamma source is stored in the black box in the foreground, but can be pushed through the long tube along the pipe to reach the part to be checked.

Figure 23.16 Radiation can cause cancer, but it can also be used in its cure. This patient is being exposed to gamma rays from a radioactive source. The rays are directed at the patient's tumour in order to destroy the cancerous cells.

Food irradiation


This is a way of preserving food. Food often decays because of the action of microbes. These can be killed using intense gamma rays. Because these organisms are single-celled, any cell damage kills the entire organism. Different countries permit different foods to be irradiated. The sterile food that results has been used on space missions (where long life is important) and for some hospital patients whose resistance to infection by microbes may be low.

Sterilisation

Sterilisation of medical products works in the same way as food irradiation. Syringes, scalpels and other instruments are sealed in plastic bags and then exposed to gamma radiation. Any microbes present are killed, so that, when the packaging is opened, the item can be guaranteed to be sterile. The same technique is used to sterilise sanitary towels and tampons.

Uses related to detectability Radioactive tracing

Every time you hear a Geiger counter click, it has detected the radioactive decay of a single atom. This means that we can use radiation to detect tiny quantities of substances, far smaller than can be detected by chemical means. Such techniques are often known as radioactive tracing.

Figure 23.17 Detecting the movement of underground water. Engineers need to know how water will move underground. This can also affect the stability of buildings on the site. Water containing a source of gamma radiation is pumped underground and its passage through cracks is monitored at ground level.

Engineers may want to trace underground water flow, for example. They may be constructing a new waste dump, and they need to be sure that poisonous water from the dump will not flow into the local water supply. Under high pressure, they inject water containing a radioactive chemical into a hole in the ground (Figure 23.17). Then they monitor how it moves through underground cracks using gamma detectors at ground level.

Radioactive labelling and genetic fingerprinting

Biochemists use radioactively labelled chemicals to monitor chemical reactions. The chemicals bond

Figure 23.18 A DNA (genetic) fingerprint appears as a series of bands. Each band comes from a fragment of DNA labelled with a radioactive chemical. The bands (and thus particular DNA fragments) show up on a photographic film.

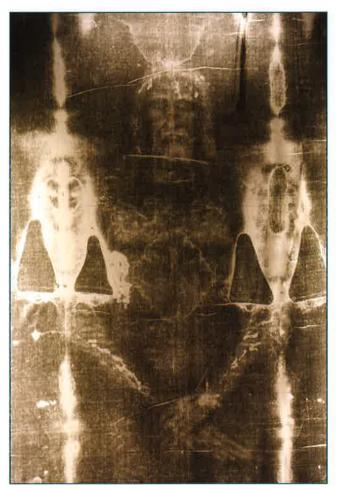
to particular parts of the molecules of interest, so that they can be tracked throughout a complicated sequence of reactions. The same technique is used to show up the pattern of a genetic fingerprint (Figure 23.18).

Uses related to radioactive decay

Half-life and radiocarbon dating

Here is another application of radioisotopes. Because radioactive substances decay at a rate that we can determine, we can use them to discover how old objects and materials are. The best-known example of this is **radiocarbon dating**.

All living things contain carbon. Plants get this from atmospheric carbon dioxide, which they use in photosynthesis. Plant-eating animals get it from the plants they eat to build their bodies. Meat-eating animals get it from their prey. Most carbon is carbon-12 (${}^{12}_{6}$ C), which is not radioactive. A tiny fraction is radioactive carbon-14 (${}^{14}_{6}$ C), with a half-life of 5370 years. (It emits beta radiation.)


The idea behind radiocarbon dating is this. When a living organism dies, the carbon-14 in its body decays. As time passes, the amount remaining decreases. If we can measure the amount remaining, we can work out when the organism was alive.

There are two ways to measure the amount of carbon-14 present in an object:

- by measuring the activity of the sample using a detector such as a Geiger counter
- by counting the number of carbon-14 atoms using a mass spectrometer.

The Turin shroud (Figure 23.19) was famously dated in 1988 using a mass spectrometer. (This is a large machine that uses magnetic fields to separate atoms according to their mass and charge.) The shroud was dated to 1325 ± 33 CE, showing that it did *not* date from biblical times.

Problems can arise with radiocarbon dating. It may be that the amount of carbon-14 present in the atmosphere was different in the past. Certainly, nuclear weapons testing added extra carbon-14 to the atmosphere during the 1950s and 1960s. This means that living objects that died then have an excess of carbon-14, making them appear younger than they really are.

Figure 23.19 The Turin shroud was dated by radiocarbon dating. It was found to date from the 14th century, which matched the dates of the earliest historical records of its existence.

Other radioactive dating techniques

Geologists use a radioactive dating technique to find the age of some rocks. Many rocks contain a radioactive isotope, potassium-40 ($^{40}_{19}$ K), which decays by beta emission to a stable isotope of argon ($^{40}_{18}$ Ar). Argon is a gas, and it is trapped in the rock as the potassium decays. Here is how the dating system works.

The rocks of interest form from molten material (for example, in a volcano). There is no argon in the molten rock because it can bubble out. After the rock solidifies, the amount of trapped argon gradually increases as the potassium decays. Geologists take a sample and measure the relative amounts of argon and potassium. The greater the proportion of argon, the older the rock must be.

Questions

- **23.18** Why would beta radiation not be suitable for use in a smoke detector?
- **23.19** Why must gamma radiation be used for inspecting a welded pipe?
- 23.20 When medical equipment is to be sterilised, it is first sealed in a plastic wrapper. Why does this not absorb the radiation used?
- **23.21** Why must the engineers shown in Figure 23.17 use a source of gamma radiation?

Summary

You should know:

- about background radiation
- how radiation is detected
- about alpha (α) and beta (β) particles and gamma (γ) radiation
- the nature of ionising radiation
- the meaning of radioactive decay equations
- how radiation is deflected in magnetic and electric fields
 - the meaning of the half-life of a radioactive substance
- about the uses of radioactive substances.

End-of-chapter questions

1 Alpha, beta and gamma radiations are three types of radiation produced by radioactive substances. Copy and complete the table to show the nature of these radiations.

Radiation	Symbol	Type of particle or electromagnetic radiation	Mass	Charge
alpha				
beta				
gamma				

2	Copy and complete	the table,	using all the	words from the li	ist in the second colum	n.
	Geiger counter	alpha	gamma	background	photographic film	beta

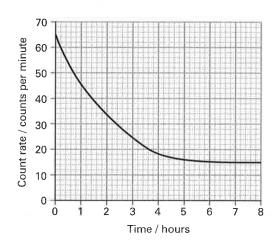
radiation in the environment	
detectors of ionising radiation	
three types of ionising radiation from radioactive substances	

	3	Copy and	complete	the	following	sentences:
--	---	----------	----------	-----	-----------	------------

- a Beta radiation is attracted towards a positively charged plate because
- **b** Alpha radiation is deflected in a magnetic field because it is The direction of the deflection is given by
- c Gamma radiation is unaffected by electric and magnetic fields because
- 4 Copy and complete the table, which summarises how radiations are absorbed.

Radiation	Penetration	Absorption	Absorbed by
alpha	least penetrating	most easily absorbed	thin paper, a few cm of air
beta	in between		
gamma			

- 5 a Copy and complete the following sentence, filling the gaps with suitable words.


 The half-life of a radioactive substance is the taken for of the atoms in a sample to
 - **b** Sketch a graph to show the pattern of radioactive decay. Indicate how the half-life is found from the graph.

Radioactive substances and the radiation they produce have many uses. In the table, four types of use are given, and the reasons for them. But they are incorrectly matched up. Copy the table, matching the correct reason with each use.

Use	because
Finding the age of an object	radiation can penetrate matter.
Seeing through solid objects	small amounts of radiation can be detected.
Sterilising medical equipment	radioactive substances decay at a known rate.
Tracing the movement of hazardous substances	radiation can destroy living cells.

A school has two radioactive sources for use in physics experiments. One is a source of α -radiation, and the other is a source of β -radiation. They have lost their labels, and the teacher wants to check which is which. Use your knowledge of the different penetrating powers of these radiations to suggest how this might be done.

In an experiment to determine the half-life of a radioisotope, the graph shown was obtained.

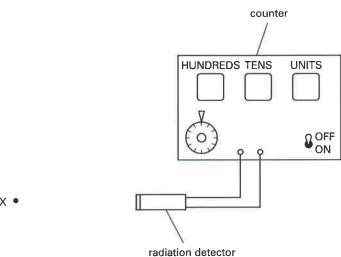
From the graph, what was the background count rate?

[2]

[4]

- What was the initial count rate from the sample (that is, disregarding the background count rate)?
- [2] [3]
- From the graph, deduce the half-life of the radioisotope. Draw a sketch graph to illustrate your method.
- Alpha, beta and gamma radiations are produced by radioactive substances. They are sometimes described as ionising radiations.
 - a Explain what is meant by the term ionisation.

[2]


b Name another type of ionising radiation.

[1]

- 10 The radiation produced by radioactive substances has many uses.
 - a Describe one use of γ -radiation that makes use of its ability to damage living tissues.
- [3]
- **b** Describe one use of β -radiation that makes use of the fact that it is absorbed by a few millimetres of solid matter.

[3]

11 The counter in the diagram records the total number of times that a radiation is detected whilst the counter is switched on.

a With no radioactive source present, the counter is set to zero and then switched on for 4 minutes. After this time, the counter reads:

What radiation is the apparatus detecting?

[1]

Calculate the average count rate of this radiation, in counts / min.

[2]

b i Point X is 25 cm from the radiation detector. A source that is known to be highly radioactive is placed at X. The counter is reset to zero, and the count again taken for 4 minutes. The counter now reads:

State what type of radiation is being emitted by the source.

[1]

ii The source is moved to a position 2 cm from the detector. The counter is set to zero and restarted. The counter reading after counting for 4 minutes is:

8 7 6

Estimate the count rate due to the radioactive source alone, in counts / min.

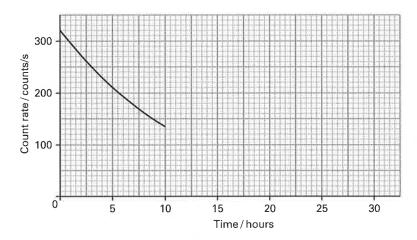
[3]

[Cambridge IGCSE® Physics 0625/23, Question 11, October/November, 2011]

12 a An atom consists of a nucleus made up of protons and neutrons, surrounded by orbiting electrons.

i Which of these particles has a positive charge?

[1]


ii Which two of these particles have almost equal mass?

[1]

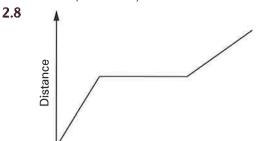
b A silver nucleus is denoted by ${}^{107}_{47}$ Ag. State the number of protons and the number of neutrons in this nucleus.

[2]

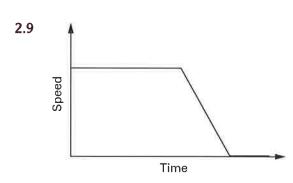
c The graph shows part of the decay curve of a radioactive nuclide. The count rate is plotted against time.

i Use the graph to find the half-life of this nuclide.

[1]

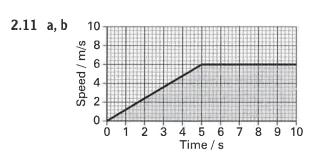

ii Copy the graph and plot two more points at times greater than 10 hours. Use a dot in a circle to indicate each point.

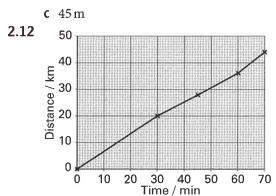
[2]

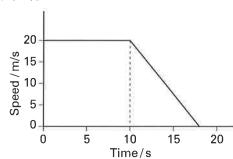

[Cambridge IGCSE® Physics 0625/33, Question 11, May/June, 2011]

Answers to questions

- 1.1 1968 cm³
- **1.2 a** 0.71 mm **b** 158 mm³
- 1.3 volume = 18 cm^3
- **1.4 a** 1.51 cm **b** 3.22 mm
- 1.5 13.2 g/cm³
- **1.6** 7.6 g/cm³
- 1.7 80 cm³; 7.75 g/cm³
- **1.8** 0.04 s
- 1.9 0.87 s; 0.864 s
- 2.1 inches per minute
- 2.2 s/m, ms
- **2.3 a** fastest: C **b** slowest: B
- 2.4 250 m/s
- 2.5 75 km/h
- 2.6 1728 000 km
- 2.7 3.33 h (3 h 20 min)

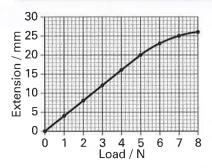



Time

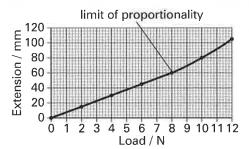

- **2.10** a A, C, G
 - C, G
 - c E
- **d** B, D

b F

- 32 km/h
- 2.13 km/s
- 2.14 1.5 m/s²
- **2.15** 0.20 m/s²
- 2.16 a



- **b** $2.5 \,\mathrm{m/s^2}$
- c 280 m
- **3.1** a accelerate to right
 - **b** slow down / accelerate to left
 - c change direction
- **3.2 a i** unbalanced; **ii** 20 N to right; **iii** accelerate to right


- **b** i balanced
 - ii no resultant force
 - iii no acceleration
- c i unbalanced
 - ii 50 N downwards
 - iii accelerate downwards
- 3.3 a mass = 1 kg; weight is less than 10 N
 - **b** mass = 1 kg; weight is greater than 10 N
- 3.4 a 900 N
 - **b** 333 N
- 3.5 a accelerating
 - **b** weight greater than air resistance
 - **c** The parachutist will slow down until weight equals air resistance; and then fall at constant speed.
- 3.6 1500 N
- 3.7 2.0 N
- 3.8 25 m/s²
- 3.9 800 kg
- 3.10 15000 kg m/s
- **3.11 a** 7000 N s
 - **b** 7000 kg m/s
- 3.12 a 500 km/h
 - **b** 608 km/h at 9.5° east of north
- **4.1** force F_3 at end; it is at 90° to trapdoor and furthest from the pivot
- **4.2** The force of the wind has a greater turning effect on a tall tree.
- **4.3** $X = 1000 \,\mathrm{N}; Y = 1400 \,\mathrm{N}$
- **4.4** Z = 90 N; 1.50 m
- **4.5 a** This is to lower their centre of mass.
 - **b** The block on the arm is there to balance the load. The blocks at the base are to lower its centre of gravity, broaden its base and make it more stable.
- **4.6 a** The forces are equal and along the same straight line, so there is no moment.
 - **b** No, because there is an unbalanced force to the right.
 - **c** The cyclist is unstable, because the forces are not balanced.

- **5.1** 22.0 cm
- 5.2

Load/N	Length/mm	Extension/mm
0.0	50	0
1.0	54	4
2.0	58	8
3.0	62	12
4.0	66	16
5.0	70	20
6.0	73	23
7.0	75	25
8.0	76	26

- 5.3 7.5 N
- **5.4** 24 N
- 5.5

load at the limit of proportionality = 8.0 N

- **5.6** a small area gives high pressure
 - **b** large area gives low pressure
 - c small area gives high pressure
- 5.7 a barometer b
 - **b** manometer
- **5.8 a** The pressure in tank A is greater than atmospheric. This pressure has pushed the level of liquid in the manometer downwards against the push of atmospheric pressure on the other side.
 - **b** equal to atmospheric pressure

$$5.9 p = \frac{F}{A}$$

- 5.10 pascal, Pa
- **5.11** 100 N on 1 cm²
- 5.12 20000 Pa
- 5.13 600000N
- 5.14 8000 Pa
- **5.15 a** 3.0 m³ **b** 27 600 N **c** 9200 Pa **d** 9200 Pa
- **6.1** kinetic energy
- **6.2** thermal (heat) energy, light energy
- **6.3** elastic potential energy
- **6.4** gravitational potential energy; raise it upwards
- 6.5 loudspeaker, buzzer, and so on
- 6.6 light, sound, heat

6.7

Energy stores	Example	
kinetic energy	moving car	
gravitational potential energy	water in cloud	
chemical energy	petrol	
nuclear energy	uranium	
strain energy	wound-up clockwork toy	
internal energy	hot water bottle	

- **6.8** a chemical energy of fuel \rightarrow internal energy of room and water
 - **b** electrical energy \rightarrow light and heat
 - c electrical energy \rightarrow heat, k.e. and sound
- 6.9 a 100 J
- **b** 90 J
- **6.10** a heat
- **b** sound
- **6.11** harms the environment; wastes limited resources; costs money
- **6.12** 60%
- **6.13** 25%
- **6.14** 200 J
- **6.15 a** decreasing **b** constant **c** increasing
- **6.16** 1000 J
- **6.17** 100 m
- **6.18** speed
- **6.19** 0.5 J
- **6.20** 2560 J
- **6.21** wasp

- **7.1** Both are variable (more wind and waves some days than others).
- 7.2 light energy \rightarrow electrical energy (+ heat)
- **7.3** k.e. and g.p.e.
- 7.4 a coal, oil, gas
 - **b** wood, charcoal, peat (also straw and others)
- 7.5 chemical energy \rightarrow heat (+ light)
- **7.6** nuclear energy \rightarrow electrical energy (+ heat)
- 7.7 a non-renewable because uranium is used up
 - **b** renewable because new waves appear every day
- **7.8** uranium (nuclear fuel), geothermal energy, tidal energy
- **8.1** 15 kg of feathers
- **8.2** gravity
- **8.3** joule (J)
- 8.4 0.50 MJ
- **8.5 a** 1.0 J
- **8.6** 500 N through 10 m
- 8.7 none it is not moving

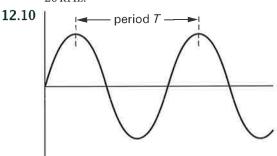
b 10 J

- **8.8** lift more bricks at a time (greater force); lift them faster
- **8.9 a** 1000 **b** 1000 000
- **8.10** 40 J/s
- **8.11** 100 W
- 8.12 increased
- **9.1** A liquid takes up the shape of a container without its volume changing.
- **9.2** boiling point (or condensing point)
- **9.3** a solidification or freezing
 - **b** freezing point or melting point
- **9.4 a** Water is becoming hotter.
 - **b** Water and steam are present.
- **9.5** 78°C
- **9.6** Air is a mixture, so it does not have fixed melting and boiling points.
- **9.7 a** because the particles are moving (they have kinetic energy)
 - **b** gas
- 9.8 a solid b gas

- **9.9** Air is a gas and water is a liquid. In these states, the particles can move past each other, so we can push past them. In a solid, such as a wall, particles are in fixed positions, so that we cannot push them apart.
- **9.10** a Water molecules are too small to see.
 - **b** It was constantly jostled by molecules of the water.
- **9.11** Forces between tungsten atoms are stronger than forces between iron atoms.
- 9.12 a It is melting.
 - **b** Energy is required to break bonds between particles (it increases their potential energy).
- **9.13** The pressure will increase because the force of the molecules on the walls of the container will be greater (and collisions will be more frequent).
- **9.14** a halved
- **b** halved
- **c** remains the same

9.15

volume doubled


The volume is doubled but the number of particles remains the same, so their collisions with the walls are half as frequent.

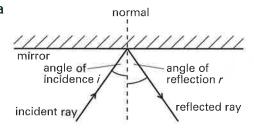
- **9.16** Decrease the temperature so that the particles move more slowly. Then they will collide with the walls with less force, and less frequently.
- **9.17** Subscript 1 labels values of *p* and *V* before the change. Subscript 2 labels values after the change.
- 9.18 3 dm³
- 9.19 240 litres
- **9.20** 800 kPa
- **10.1 a** The 2 kg of water at 30 °C has twice as much internal energy as 1 kg. The internal energy of the water is made up of the energies of all the molecules. There are twice as many molecules in 2 kg.
 - **b** The temperature is the same (because the average energy of a molecule is the same in each bucket).
 - **c** The average energy per molecule is the same, as they are at the same temperature.
- 10.2 0 °C = melting point of pure ice; 100 °C = boiling point of pure water

- 10.3 Place thermometer in pure melting ice and mark 0 °C. Place in pure boiling water and mark 100 °C. Divide the scale between these two into 100 equal units.
- **10.4** a approximately 40 to 50 °C
 - **b** At 20 °C, the resistance changes only a little for each degree change in temperature. It changes more rapidly around 50 °C.
- 10.5 The temperature-sensitive junction of the thermocouple is very small and can heat up or cool down more rapidly than the bulb of a mercury thermometer.
- **10.6** As the temperature rises, the air in the flask expands and pushes downwards, so that the water level drops.
- 10.7 a The cold water gets hotter and expands. As its volume increases, it pushes further up the tube.
 - **b** Set up two identical flasks, one with water, the other with paraffin. Add a thermometer to each. Place both in a hot water bath. Record the level of the liquid in the tube as the temperature increases.
- 10.8 The ceramic dish has the greater thermal capacity. Assuming that both absorb energy at the same rate, the dish will require longer to heat up to the temperature of the oven because it requires more energy for each degree rise in temperature.
- 10.9 A brick of a certain size has a greater thermal capacity than a steel block of the same size.
 Hence, for a given rise in temperature, brick will store more energy than steel.
- **10.10 a** 8400 J **b** 42000 J
- 10.11 He was correct. The energy lost by the aluminium has warmed the water. The water temperature has increased by 18 °C. The aluminium has cooled by 62 °C. Both have the same mass. Hence the s.h.c. of the aluminium must be less than that of the water.
- **10.12 a** A thermocouple has a small mass (it is simply the junction between two thin wires).
 - **b** As the temperature varies, the temperature of the thermocouple will change rapidly too because it does not require much energy to heat or cool it.

- 10.13 The temperature must remain constant as the substance is melting, otherwise energy would need to be supplied or removed to change the temperature, and this would give an incorrect answer.
- **10.14** 2250 000 J/kg or 2.25 MJ/kg
- 10.15 When water (or any other substance) vaporises, energy must be supplied to break the bonds between each molecule and several neighbours. When a solid melts, only one or two bonds per molecule must be broken, so less energy is needed.
- 11.1 a copper, steel, other metals
 - b air, wood, plastic, glass
- **11.2** a temperature difference
- **11.3** marble (it has a greater thermal conductivity)
- 11.4 convection
- 11.5 a Particles of hot gas move faster.
 - **b** Particles of hot gas are further apart.
- **11.6** Warm air rises above the heater, and moves around the room. Cold air flows in to replace it and so is heated.
- 11.7 When a fluid is heated, its expansion causes its density to decrease. It rises because it is less dense than the surrounding air. Cooler, denser air sinks as a result of the pull of gravity.
- **11.8** No convection current would be established because the air heated by the heater cannot rise.
- 11.9 radiation
- **11.10** infrared, ultraviolet
- **11.11** The rate of infrared emission increases.
- **11.12 a** Matt black is a better absorber.
 - **b** Matt black is a better emitter.
 - **c** Shiny black is a better reflector.
- **11.13** Lids reduce heat loss by convection. Wooden or plastic surfaces reduce heat loss by conduction.

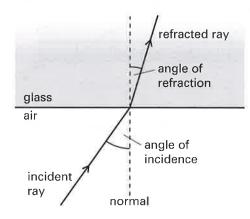
- **11.15** Heat is lost from head by convection, and a hat greatly reduces this.
- 12.1 all three
- **12.2** the air in the hollow tube
- **12.3 a** 600 ms = 0.6 s **b** three-fifths
- **12.4** They must be in a straight line so that the distance travelled in the time interval measured is equal to the separation of the microphones.
- **12.5** Light travels faster than sound. For example, lightning is seen before thunder is heard.
- **12.6** pitch gets higher
- 12.7 loudness decreases
- 12.8 a 20 Hz to 20 kHz
 - **b** upper limit in particular decreases
- 12.9 Ultrasound is sound whose frequency is beyond the upper limit of hearing, that is, above about 20 kHz.

- **12.11 a** A has the greater frequency.
 - **b** A will sound more high-pitched.
- **12.12** Sound waves travel by the vibration of the particles of a material. There are no particles in a vacuum.
- 12.13 shout from outside a closed window
- 12.14 In a compression, the particles are closer together than before the wave is formed. In a rarefaction, the particles are further apart. See Figure 12.11 in the main text.


-1	4	- 1	
- 4		- 1	71

Feature	Reduces conduction?	Reduces convection?	Reduces radiation?
double glazing	yes	yes	yes (if coated)
cavity wall insulation	yes	yes	yes
carpet, underfloor insulation	yes	no	no
draught excluders	no	yes	no
curtains	yes	yes	no
loft insulation (with shiny foil)	yes	yes	yes

AMBULANCE 6 1.61


b This is so that it looks the right way round in a motorist's rear-view mirror.

13.2 a

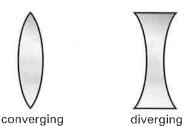
- **b** angle of incidence = angle of reflection
- **13.3** 60
- **13.4** No light reaches the place at which the image appears to be formed.

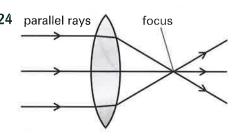
13.5

13.6 towards the normal

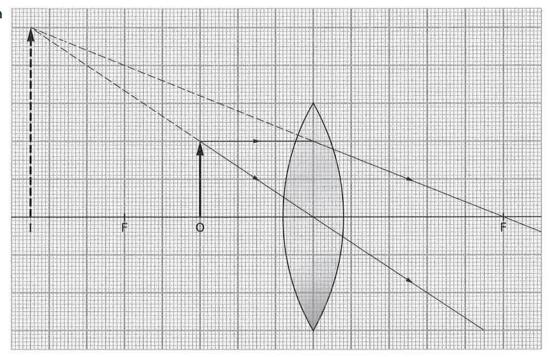

13.7

- **b** It is parallel to its initial direction.
- 13.8 a angle of incidence = 0°
 - **b** angle of refraction = 0°
- **13.9** The angle of refraction is less than the angle of incidence.
- **13.10** Rays of light are refracted as they pass through the raindrops.
- **13.11** 2.4
- **13.12 a** Light travels more slowly in material B, because the ray bends more on entering B.
 - **b** material B

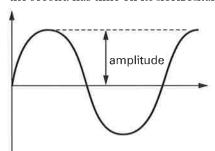

- 13.13 a glass
 - **b** away from the normal
- **13.14** 1.58
- 13.15 $2.17 \times 10^8 \,\mathrm{m/s}$
- 13.16 25.4°
- **13.17** total: 100% of the light is reflected internal: reflection happens inside the transparent material
- **13.18** No, it will not be totally internally reflected because 45° is less than the critical angle.
- **13.19** a $c = 48.8^{\circ}$
 - **b** See Figure 13.12c in the main text.
- **13.20** n = 1.56


13.21

13.22 Light travelling along the glass will be absorbed by any impurities present.


13.23

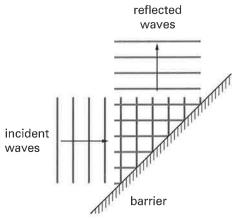
- **13.25** Reverse the arrow on the rays so that they spread out from the focus.
- **13.26** It is the point at which rays travelling parallel to the axis of the lens are made to converge.
- 13.27 Light rays pass through the point at which a real image is formed, and it can be formed on a screen. For a virtual image, the rays only appear to emerge from that point, and the image cannot be formed on a screen.
- **13.28** The image arrow is below the axis.
- **13.29** The rays from the image are dashed. They only appear to be diverging from that point.


13.30 a

b 7.5 cm

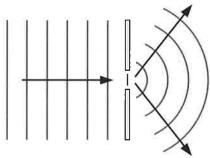
- **14.1** The molecules vibrate up and down.
- **14.2** The first has distance on its horizontal axis, and the second has time on its horizontal axis.

14.3

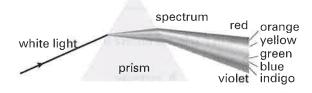


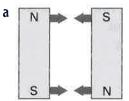
The diagram should show that amplitude is the height of a wave crest above the central (undisturbed) level.

- **14.4** Measure across, say, 10 ripples and find the average separation by dividing by 10.
- **14.5** 1.5 cm (or 15 mm)
- **14.6 a** 100 Hz **b** 0.01 s
- 14.7 longitudinal
- **14.8** $v = f\lambda$ (speed v in m/s, frequency f in Hz, wavelength λ in m)
- **14.9** 300 m/s
- **14.10** wavelength 1 m has higher frequency

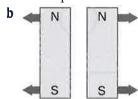

- **14.11** frequency 90 MHz has longer wavelength
- **14.12 a** speed decreases
 - **b** wavelength decreases
 - **c** frequency is unchanged

14.13


- **14.14** Change the depth of the water shallower water gives slower ripple speed.
- **14.15** Diffraction ripples spread out into the space beyond the gap.
- **14.16** For greatest diffraction effect, the width of the gap should be equal to the wavelength of the waves.

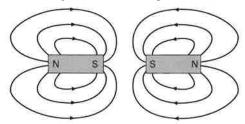

15.1 yellow, blue

15.2

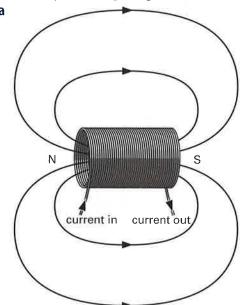


- **15.3** Some colours of light are more strongly refracted because their speed decreases more.
- 15.4 a red light
- **b** violet light
- 15.5 a infrared
- **b** red light
- **15.6** a gamma rays
- **b** radio waves
- **15.7 a** Both violet light and red light travel equally fast in empty space.
 - **b** Red light travels faster in glass.
- **15.8** infrared radiation, microwaves
- **15.9** Microwaves may transfer signals to and from satellite; radio waves are broadcast, and received by an aerial; remote control uses infrared.

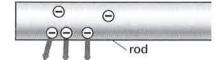
16.1

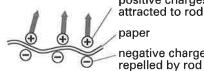

Adjacent N and S poles attract one another with equal forces.

The adjacent N poles and the adjacent S poles repel one another with equal forces.


- **16.2 a** Soft magnetic materials are easier to magnetise and demagnetise. Hard magnetic materials are more difficult to magnetise and also more difficult to demagnetise.
 - **b** A permanent magnet made of steel will retain its magnetism for a longer time.

16.3

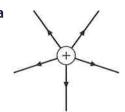

16.4 Copper and iron are mixed together. Pass the electromagnet over the mixture of metal. Because copper is not magnetic, the electromagnet will attract only the iron, pulling it out of the mixture.

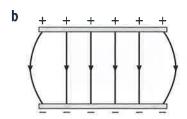

16.5 a

- **b** When the current is reversed, the field is reversed, so the arrows on the field lines are reversed.
- **17.1** repel
- **17.2 a** positive (and equal in size to the negative charge on the rod)
 - **b** attract
- 17.3 Individual hairs all have the same charge, so they repel. Hair and comb have opposite charges, so they attract.

17.4

positive charges attracted to rod

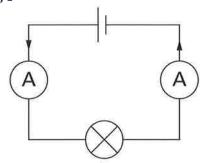

paper negative charges


17.5 a negative

b repel

17.6 The electric force causes the negative charges (electrons) to repel each other. As a result, some of them move through the wire to the other sphere, so that it gains a negative charge. (The charge on the first sphere decreases.)

17.7



a ammeter

connected in series

18.2 a, b

c Ammeter readings are the same.

18.3 **a** (for example) copper, gold, silver

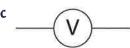
b (for example) glass, Perspex, polythene

18.4 a from positive to negative

b from negative to positive

a ampere, amp (A) **b** coulomb (C) 18.5

a 1000 **b** 1000 000 18.6

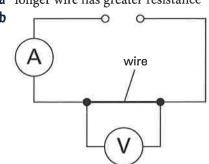

18.7 1 A = 1 C/s

18.8 20 A

18.9 40 C

18.10 a potential difference

b voltmeter



18.11 a e.m.f. (electro motive force)

b volt

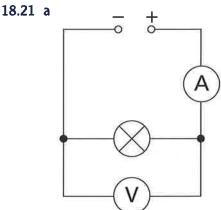
18.12 a $6.0\,\Omega$ **b** increase

18.13 a longer wire has greater resistance

18.14 20 V

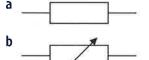
18.15 a 10Ω **b** 30 V

18.16 14.5 mA (0.0145 A)

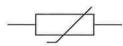

18.17 The graph is a straight line through the origin.

18.18 The graph is curved; twice the p.d. gives less than twice the current.

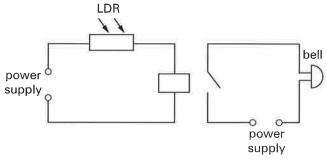
18.19 a $80\,\Omega$


b $160\,\Omega$

18.20 12 J



b 36 V c 36 J


- **18.22** watts = volts \times amps
- 18.23 50 W
- 18.24 2.5 A
- 18.25 2640 J
- 19.1

- **19.2** a light-dependent resistor
 - b _____
 - **c** Its resistance decreases when light shines on it.
- 19.3 a

- **b** used in temperature sensing circuit
- **c** Its resistance changes rapidly when temperature changes a little.
- 19.4 a

- **b** Resistance of LDR is high, so small current, so relay does not switch.
- **c** Resistance of LDR is low, so high current flows in circuit, so relay switches, completing the right-hand circuit.
- **19.5** 40 Ω
- **19.6** The same current (1.4 A) flows through resistors B and C.
- **19.7** 90 Ω
- 19.8 a in series
 - **b** The function of a potential divider circuit is to provide a p.d. smaller than the p.d. of the supply.
- **19.9** A long wire is like two or more short wires connected in series. Their resistances add up to give the combined resistance.

- **19.10** A thick wire is like two or more thin wires connected in parallel. Their effective resistance is less than that of an individual wire.
- **19.11 a** 0.50 A
 - **b** The 20Ω resistor has the greater p.d. across it.
- **19.12** $20\,\Omega$
- **19.13** 20Ω

b

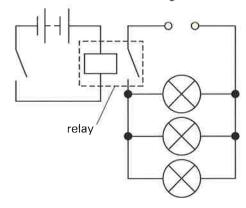
b

19.14 a

Input Output from second NOT gate		Output from first NOT gate	
0	1	0	
1	0	1	

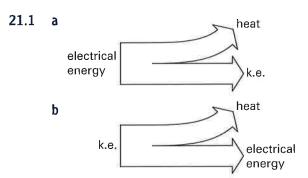
- **b** The output is always the same as the input.
- 19.15 a input 1 output

Input 1	Input 2	Output
0	0	1
1	0	0
0	1	0
1	1	0


- C The output is ON (1) only when both of the inputs are OFF (0).(alternatively: The output is ON (1) when neither of the inputs is ON (1).)
- 19.16 a input 1 output

Input 1	Input 2	Output
0	0	0
1	0	1
0	1	0
1	1	0

19.17 a


- **b** Output will be ON only when all four inputs are ON.
- **c** (*for example*) It could be used to unlock a bank safe that requires four keys to be inserted in different locks.
- 19.18 5 A; slightly above normal current
- **19.19 a** To protect the wiring of the circuits; if an excessive current flows, the fuse blows and breaks the circuit.
 - **b** An electromagnetic trip switch could be used instead.
- **19.20** Heating of wires, leading to melting of insulation (poisonous fumes, possibility of fire) and possible short-circuit between wires.
- 20.1 clockwise
- **20.2** The field lines are further apart.
- **20.3 a** Iron is a magnetic material.
 - **b** Soft iron is used because it must magnetise and demagnetise easily (or the armature will not move back and forth).
- **20.4** The core increases the strength of the coil.

20.5

- **20.6** It would rotate in the opposite direction because its poles would be attracted the opposite way round.
- **20.7 a** If the current was not reversed, the coil would turn until its poles were facing their opposites and then stop turning.
 - **b** The commutator reverses the current.
- **20.8** A greater current gives a greater turning effect.
- **20.9** reverse the current; reverse the magnetic field
- **20.10** force (motion) thumb magnetic field first finger current second finger

- **20.11** increase the current; increase the magnetic field strength
- 20.12 zero force
- **20.13 a** Thermionic emission is the release of cathode rays from a heated cathode.
 - **b** electrons
- **20.14** The ray will be deflected upwards. Because electrons have negative charge, they are attracted to the positive plate and repelled away from the negative plate.

- **21.2** The wire or magnet must move.
- **21.3** move the N pole out of the coil; move the S pole towards the coil
- **21.4** move the magnet faster; use a stronger magnet.
- **21.5** bigger coil; more turns; stronger magnetic field; faster movement
- **21.6** So that less energy is lost during transmission.
- 21.7 primary coil; secondary coil; core
- **21.8** step-up
- 21.9 step-down
- **21.10** 2.5
- 21.11 100
- **21.12 a** The core transfers the varying magnetic field from the primary coil to the secondary.
 - **b** Its magnetism must change rapidly.
- **21.13** The magnetic field in the core does not change, so no e.m.f. will be induced in the secondary coil.
- 21.14 current is less
- 21.15 a 400 kV
 - **b** 250 A
 - c 1.5 MW
- **21.16** a 157
 - **b** 1.53 A
 - **c** No power is lost in the transformer.

- **22.1** If an alpha particle has a head-on collision with a gold nucleus, it is repelled backwards because both have positive charge.
- 22.2 The chance of a head-on collision is small because the nucleus makes up only a very small fraction of the atom's volume (and the gold foil was very thin).
- 22.3 a electrons
 - **b** positive charge
- **22.4** There is electrostatic attraction between opposite charges.
- 22.5 a protons, neutrons
 - **b** electrons
- **22.6 a** nucleon number = 17
 - **b** proton number = 8
- 22.7 ²¹⁰₈₂Pb
- 22.8 47 protons, 60 neutrons, 47 electrons
- **22.9** 1840 approximately
- **22.10 a** The number of protons is the same (and the number of electrons in a neutral atom).
 - **b** number of neutrons

22.11 a

Nuclide	Proton number, Z	Neutron number, N	Nucleon number, A
Nu-1	6	6	12
Nu-2	7	6	13
Nu-3	7	7	14
Nu-4	6	8	14
Nu-5	5	6	11
Nu-6	6	7	13

- b Nu-1, Nu-4, Nu-6
- c Nu-2, Nu-3
- **d** boron (B), carbon (C), nitrogen (N)

- 23.1 radon and thoron gases in atmosphere
- **23.2** There is less atmosphere above them to absorb cosmic rays from space.
- 23.3 15% approximately
- **23.4** (*for example*) medical, weapons fallout, air travel, TV sets, working with radioactive materials, nuclear discharges
- 23.5 Geiger counter, photographic film
- 23.6 a α
 - **b** β
- 23.7 electron
- 23.8 γ
- 23.9 a y
 - **b** a
- **23.10** a ${}^{210}_{84}$ Po $\rightarrow {}^{206}_{82}$ Pb + ${}^{4}_{2}$ He + energy
 - **b** 84 = 82 + 2
 - c 210 = 206 + 4
- **23.11** α , β , γ , X-rays
- 23.12 γ-rays are uncharged.
- **23.13 a** α
 - **b** It is most easily absorbed.
- **23.14** average (... the average time taken ...)
- **23.15** 25
- **23.16** 55
- **23.17** 6000 years
- **23.18** β -radiation is less easily absorbed than α -radiation.
- **23.19** The radiation must penetrate thick metal. α and β -radiation would be completely absorbed.
- **23.20** The plastic is too thin to absorb the γ -radiation used.
- **23.21** The radiation must penetrate the ground to reach the surface if it is to be detected.

Appendix 1 Physical quantities, their symbols and units

Note: Those shown in red are required for the Supplement only.

	Quantity	Symbol	Unit
Block 1 General physics	length	<i>l</i> , <i>h</i> , etc.	km, m, cm, mm
	area	A	m², cm²
	volume	V	m³, dm³, cm³
	weight	W	N
	mass	m, M	kg, g, mg
	time	t	h, min, s, ms
	density	D	g/cm³, kg/m³
	speed	μ, ν	km/h, m/s, cm/s
	acceleration	a	m/s ²
	acceleration of free fall	g	
	force	<i>F</i> , <i>P</i> , etc.	N
	moment of a force		Nm
	work done	W, E	J, kJ, MJ
	energy	E	J, kJ, MJ
	power	P	W, kW, MW
	pressure	p, P	Pa, N/m ²
	atmospheric pressure		millibar, mm
Block 2 Thermal physics	temperature	θ , T	°C
	specific heat capacity	С	J/(g°C), J/(kg°C)
	latent heat	L	J
	specific latent heat	1	J/kg, J/g
Block 3 Physics of waves	frequency	f	Hz
	wavelength	λ	m, cm
	focal length	f	
	angle of incidence	i	degree (°)
	angle of reflection, refraction	r	degree (°)

	Quantity	Symbol	Unit	
	refractive index	n		
	critical angle	С	degree (°)	
Block 4 Electricity and magnetism	potential difference / voltage	V	V, mV	
	current	I	A, mA	
e.m.f	charge	Q	C, As	
	e.m.f.	E	V	
	resistance	R	Ω	

Appendix 2 Electrical symbols

cell —	light dependent resistor		generator	- G -
	variable resistor	-4-	heater -	
battery of cells or	potential divider		ammeter	—A—
power supply —o o—	fuse		voltmeter	—V—
a.c power supply —○ ~ ○—	relay coil	4	galvanometer	- ⊕-
junction of conductors	diode	\rightarrow	oscilloscope	
earth or ground	light-emitting diode		transformer	
lamp ———	electric bell	\ominus	AND gate	=D-
switch	buzzer		OR gate	⇒
fixed resistor —	microphone	Þ	NAND gate	=>-
variable resistor	loudspeaker		NOR gate	→
thermistor	motor	_ <u>M</u> _	NOT gate	>-

Glossary

a.c. generator a device, such as a dynamo, used to generate alternating current (a.c.)

acceleration the rate of change of an object's velocity

acceleration due to gravity the acceleration of an object falling freely under gravity

acceleration of free fall see acceleration due to gravity

activity the rate at which nuclei decay in a sample of a radioactive substance

air resistance the frictional force on an object moving through air

alpha decay the decay of a radioactive nucleus by emission of an α-particle

alpha particle (α-particle) a particle of two protons and two neutrons emitted by an atomic nucleus during radioactive decay

alternating current (a.c.) electric current that flows first one way, then the other, in a circuit

ammeter a meter for measuring electric current

amp, ampere (A) the SI unit of electric current

amplitude the greatest height of a wave above its undisturbed level

angle of incidence the angle between an incident ray and the normal to the surface at the point where it meets a surface

angle of reflection the angle between a reflected ray and the normal to the surface at the point where it reflects from a surface

angle of refraction the angle between a refracted ray and the normal to the surface at the point where it passes from one material to another

average speed speed calculated from total distance travelled divided by total time taken

axis the line passing through the centre of a lens, perpendicular to its surface

background radiation the radiation from the environment to which we are exposed all the time

barometer an instrument used to measure atmospheric pressure

battery two or more electrical cells connected together in series; the word may also be used to mean a single cell

becquerel (Bq) the SI unit of activity; 1 Bq = one decay per second

beta decay the decay of a radioactive nucleus by emission of a beta particle

beta particle (β -particle) a particle (an electron) emitted by an atomic nucleus during radioactive decay

biomass fuel a material, recently living, used as a fuel

boiling point the temperature at which a liquid changes to a gas (at constant pressure)

Boyle's law the law that relates the pressure and volume of a fixed mass of gas (pV = constant at constant temperature)

Brownian motion the motion of small particles suspended in a liquid or gas, caused by molecular bombardment

cell a device that provides a voltage in a circuit by means of a chemical reaction

centre of mass the point at which the mass of an object can be considered to be concentrated

charge see electrostatic charge

chemical energy energy stored in chemical substances and which can be released in a chemical reaction

circuit breaker a safety device that automatically switches off a circuit when the current becomes too high

commutator a device used to allow current to flow to and from the coil of a d.c. motor or generator

- **compression** a region of a sound wave where the particles are pushed close together
- **conduction** the transfer of heat energy or electrical energy through a material without the material itself moving
- **conductor** a substance that transmits heat or allows an electric current to pass through it
- **contaminated** when an object has acquired some unwanted radioactive substance
- **convection** the transfer of heat energy through a material by movement of the material itself
- **converging lens** a lens that causes rays of light parallel to the axis to converge at the principal focus
- **corkscrew rule** the rule used to determine the direction of the magnetic field around an electric current
- **coulomb** (C) the SI unit of electric charge; 1 C = 1 A s
- **count rate** the number of decaying radioactive atoms detected each second (or minute, or hour)
- crest the highest point of a wave
- **critical angle** the minimum angle of incidence at which total internal reflection occurs
- **current** the rate at which electric charge passes a point in a circuit
- **current-voltage characteristic** a graph showing how the current in a component depends on the p.d. across it
- **demagnetisation** destroying the magnetisation of a piece of material
- density the ratio of mass to volume for a substance
- **diffraction** when a wave spreads out as it travels through a gap or past the edge of an object
- **diode** an electrical component that allows electric current to flow in one direction only
- **direct current (d.c.)** electric current that flows in the same direction all the time
- **dispersion** the separation of different wavelengths of light because they are refracted through different angles
- **diverging lens** a lens that causes rays of light parallel to the axis to diverge from the principal focus
- doing work transferring energy by means of a force

- **drag** the frictional force when an object moves through a fluid (a liquid or a gas)
- **dynamo effect** electricity is generated when a coil moves near a magnet
- earthed when the case of an electrical appliance is connected to the earth wire (for safety)
- **efficiency** the fraction of energy that is converted into a useful form
- elastic energy see strain energy
- **electric field** a region of space in which an electric charge will feel a force
- **electrical energy** energy transferred by an electric current
- electrical resistance see resistance
- **electromagnet** a coil of wire that, when a current flows in it, becomes a magnet
- **electromagnetic radiation** energy travelling in the form of waves
- **electromagnetic spectrum** the family of radiations similar to light
- **electron** a negatively charged particle, smaller than an atom
- **electron charge** the electric charge of a single electron; -1.6×10^{-19} C
- **electrostatic charge** a property of an object that causes it to attract or repel other objects with charge
- **e.m.f.** (**electro-motive force**) the voltage across the terminals of a source of electrical energy (for example, a cell or power supply)
- energy the capacity to do work
- **equilibrium** when no net force and no net moment act on a body
- **evaporation** when a liquid changes to a gas at a temperature below its boiling point
- **extension** the increase in length of a spring when a load is attached
- Fleming's left-hand rule a rule that gives the relationship between the directions of force, field and current when a current flows across a magnetic field

- Fleming's right-hand rule a rule that gives the relationship between the directions of force, field and current when a current is induced by moving a conductor relative to a magnetic field
- **focal length** the distance from the centre of a lens to its principal focus
- focal point see principal focus
- **force** the action of one body on a second body that causes its velocity to change
- **fossil fuel** a material, formed from long-dead material, used as a fuel
- **frequency** the number of vibrations per second, or number of waves per second passing a point
- **friction** the force that acts when two surfaces rub over one another
- **fuse** a device used to prevent excessive currents flowing in a circuit
- gamma ray (γ-ray) electromagnetic radiation emitted by an atomic nucleus during radioactive decay
- **geothermal energy** the energy stored in hot rocks underground
- **gravitational potential energy (g.p.e.)** the energy of an object raised up against the force of gravity
- **gravity** the force that exists between any two objects with mass
- **half-life** the average time taken for half the atoms in a sample of a radioactive material to decay
- **hard** a material that, once magnetised, is difficult to demagnetise
- **Hooke's law** the extension of an object is proportional to the load producing it, provided that the limit of proportionality is not exceeded
- **image** what we see when we view an object by means of reflected or refracted rays
- **impulse** the product of a force and the time for which it acts (impulse = Ft)
- incident ray a ray of light striking a surface
- induction a method of giving an object an electric charge without making contact with another charged object

- infrared radiation electromagnetic radiation whose wavelength is greater than that of visible light; sometimes known as heat radiation
- **infrasound** sound waves whose frequency is so low that they cannot be heard
- **insulator** a substance that transmits heat very poorly or does not conduct electricity
- **internal energy** the energy of an object; the total kinetic and potential energies of its particles
- **interrupt card** a piece of card that breaks the light beam of a light gate
- **ionisation** when a particle (atom or molecule) becomes electrically charged by losing or gaining electrons
- **ionising radiation** radiation, for example from radioactive substances, that causes ionisation
- irradiated when an object has been exposed to radiation
- **isotope** isotopes of an element have the same proton number but different nucleon numbers
- joule (J) the SI unit of work or energy
- kinetic energy (k.e.) the energy of a moving object
- **kinetic model of matter** a model in which matter consists of molecules in motion
- lamina a flat object of uniform thickness
- **laser** a device for producing a narrow beam of light of a single colour or wavelength
- **latent heat** the energy needed to melt or boil a material
- **law of reflection** the law relating the angle of incidence of a light ray to the angle of reflection (i = r)
- **light-dependent resistor (LDR)** a device whose resistance decreases when light shines on it
- **light-emitting diode (LED)** a type of diode that emits light when a current flows through it
- **light energy** energy emitted in the form of visible radiation
- **light gate** a device for recording the passage of a moving object when it breaks a light beam
- **limit of proportionality** the point beyond which the extension of an object is no longer proportional to the load producing it
- **load** a force that causes a spring to extend

- logic gate an electronic component whose output
 voltage depends on the input voltage(s)
- **longitudinal wave** a wave in which the vibration is forward and back, along the direction in which the wave is travelling
- magnetic field the region of space around a magnet or electric current in which a magnet will feel a force
- magnetisation causing a piece of material to be magnetised; a material is magnetised when it produces a magnetic field around itself
- **manometer** a device used to measure the pressure difference between two points
- mass the property of an object that causes it to have a gravitational attraction for other objects, and that causes it to resist changes in its motion
- **melting point** the temperature at which a solid melts to become a liquid
- **model** a way of representing a system in order to understand its functioning; usually mathematical
- **moment** the turning effect of a force about a point, given by force × perpendicular distance from pivot to force
- **momentum** the product of an object's mass and its velocity (momentum = mv)
- **monochromatic** describes a ray of light (or other electromagnetic radiation) of a single wavelength
- **national grid** the system of power lines, pylons and transformers used to carry electricity around a country
- negative charge one type of electric charge
- **neutral** having no overall positive or negative electric charge
- **neutron** an electrically neutral particle found in the atomic nucleus
- **neutron number** (*N*) the number of neutrons in the nucleus of an atom
- **newton (N)** the SI unit of force; the force required to give a mass of 1 kg an acceleration of 1 m/s²
- **non-renewable** energy resource which, once used, is gone forever
- **normal** the line drawn at right angles to a surface at the point where a ray strikes the surface

- nuclear energy energy stored in the nucleus of an atom
- nuclear fission the process by which energy is released by the splitting of a large heavy nucleus into two or more lighter nuclei
- **nuclear fusion** the process by which energy is released by the joining together of two small light nuclei to form a new heavier nucleus
- **nucleon** a particle found in the atomic nucleus: a proton or a neutron
- **nucleon number** (*A*) the number of protons and neutrons in an atomic nucleus
- **nuclide** a 'species' of nucleus having particular values of proton number and nucleon number
- **ohm** (Ω) the SI unit of electrical resistance; $1 \Omega = 1 \text{ V/A}$
- **ohmic resistor** any conductor for which the current in it is directly proportional to the p.d. across it
- pascal (Pa) the SI unit of pressure; $1 \text{ Pa} = 1 \text{ N/m}^2$
- **p.d.** (**potential difference**) another name for the voltage between two points
- **penetrating power** how far radiation can penetrate into different materials
- **period** the time for one complete oscillation of a pendulum, one complete vibration or the passage of one complete wave
- photocell see solar cell
- pitch how high or low a note sounds
- pivot the fixed point about which a lever turns
- **positive charge** one type of electric charge
- **potential divider** a part of a circuit consisting of two resistors connected in series
- **power** the rate at which work is done or energy is transferred
- **power lines** cables used to carry electricity from power stations to consumers
- **pressure** the force acting per unit area at right angles to a surface
- principal focus the point at which rays of light parallel
 to the axis converge after passing through a
 converging lens

- **principle of conservation of energy** the total energy of interacting objects is constant provided no net external force acts
- principle of conservation of momentum the total momentum of interacting objects is constant provided no net external force acts
- **proton** a positively charged particle found in the atomic nucleus
- **proton charge** the electric charge of a single proton; $+1.6 \times 10^{-19}$ C
- **proton number (***Z***)** the number of protons in an atomic nucleus
- **radiation** energy spreading out from a source carried by particles or waves
- **radioactive decay** the decay of a radioactive substance when its atomic nuclei emit radiation
- **radioactive substance** a substance that decays by emitting radiation from its atomic nuclei
- **radioactive tracing** a technique that uses a radioactive substance to trace the flow of liquid or gas, or to find the position of cancerous tissue in the body
- radiocarbon dating a technique that uses the known rate of decay of radioactive carbon-14 to find the approximate age of an object made from dead organic material
- radioisotope a radioactive isotope of an element
- random process a process that happens at a random rate rather than at a steady rate; in radioactive decay, it is impossible to predict which atom will be the next to decay, or when a given atom will decay
- **rarefaction** a region of a sound wave where the particles are further apart
- ray diagram a diagram showing the paths of typical rays of light
- real image an image that can be formed on screen
- **rectifier** an electric circuit in which one or more diodes are used to convert alternating current to direct current
- **reflected ray** a ray of light that has been reflected after striking a surface
- **reflection** the change in direction of a ray of light when it strikes a surface without passing through it

- **refracted ray** a ray of light that has changed direction on passing from one material to another
- **refraction** the bending of a ray of light on passing from one material to another
- **refractive index** the property of a material that determines the extent to which it causes rays of light to be refracted
- relay an electromagnetically operated switch
- **renewable** energy resource which, when used, will be replenished naturally
- **residual-current device (RCD)** a device used to protect the user in case of an electrical fault
- **resistance** a measure of the difficulty of making an electric current flow through a device or a component in a circuit
- **resistor** a component in an electric circuit whose resistance reduces the current flowing
- **resultant force** the single force that has the same effect on a body as two or more forces
- ripple a small, uniform wave on the surface of water
- scalar quantity a quantity that has only magnitude
- **slip rings** a device used to allow current to flow to and from the coil of an a.c. motor or generator
- **Snell's law** the law that relates the angles of incidence and refraction: refractive index = $\frac{\sin i}{\sin r}$
- **soft** describes a material that, once magnetised, can easily be demagnetised
- **solar cell** an electrical device that transfers the energy of sunlight directly to electricity, by producing a voltage when light falls on it
- **solar panel** a device that absorbs sunlight to heat water
- **solenoid** a coil of wire that becomes magnetised when a current flows through it
- **sound energy** energy being transferred in the form of sound waves
- sound wave a wave that carries sound from place to place
- **specific heat capacity (s.h.c.)** a measure of how much thermal (heat) energy a material can hold
- **specific latent heat** the energy required to melt or boil 1 kg of a substance

- **spectrum** waves, or colours of light, separated out in order according to their wavelengths
- **speed** the distance travelled by an object in unit time
- **speed of light** the speed at which light travels (usually in a vacuum: 3.0×10^8 m/s)
- **spring constant** the ratio of force to extension for a spring which obeys Hooke's Law
- static electricity electric charge held by a charged insulator
- **strain energy** energy of an object due to its having been stretched or compressed
- temperature a measure of how hot or cold something is
- **terminal velocity** the greatest speed reached by an object when moving through a fluid
- thermal (heat) energy energy being transferred from a hotter place to a colder place because of the temperature difference between them
- thermal equilibrium describes the state of two objects (or an object and its surroundings) that are at the same temperature so that there is no heat flow between them
- **thermal expansion** the expansion of a material when its temperature rises
- **thermionic emission** the process by which cathode rays (electrons) are released from the heated cathode of a cathode-ray tube
- **thermistor** a resistor whose resistance changes a lot over a small temperature range
- **thermocouple** an electrical device made of two different metals, used as an electrical thermometer
- total internal reflection (TIR) when a ray of light strikes the inner surface of a solid material and 100% of the light reflects back inside it
- **transducer** any device that converts energy from one form to another
- **transformer** a device used to change the voltage of an a.c. electricity supply
- **transverse wave** a wave in which the vibration is at right angles to the direction in which the wave is travelling
- **trip switch** a device used to protect an electric circuit in case of an electrical fault

- trough the lowest point on a wave
- **truth table** a way of summarising the operation of a combination of logic gates
- **turbine** a device that is caused to turn by moving air, steam or water, often used to generate electricity
- **ultrasound** sound waves whose frequency is so high that they cannot be heard
- **ultraviolet radiation** electromagnetic radiation whose frequency is higher than that of visible light
- **upper limit of hearing** the highest frequency of sound that a person can just hear
- **variable resistor** a resistor whose resistance can be changed, for example by turning a knob
- **vector quantity** a quantity that has both magnitude and direction
- **vector triangle** a method for finding the vector sum of two vector quantities
- velocity the speed of an object in a stated direction
- virtual image an image that cannot be formed on a screen; formed when rays of light appear to be spreading out from a point
- **volt (V)** the SI unit of voltage (p.d. or e.m.f.); one volt is equal to one joule per coulomb (1 V = 1 J/C)
- **voltage** the 'push' of a battery or power supply in a circuit
- **voltmeter** a meter for measuring the p.d. (voltage) between two points
- watt (W) the SI unit of power; the power when 1 J of work is done in 1 s
- wave speed the speed at which a wave travels
- wavefront a line joining adjacent points on a wave that are all in step with each other
- wavelength the distance between adjacent crests (or troughs) of a wave
- **weight** the downward force of gravity that acts on an object because of its mass
- work done the amount of energy transferred when one body exerts a force on another; the energy transferred by a force when it moves

Index

absorbers 156, 157 absorption of radiation 322, 323, 324, 328 acceleration 21-3, 24-7, 34, 35-8, 40, 41-2, 83, 223 acceleration due to gravity (g) 38, 40, 73 acceleration of free fall 38 activity 326, 330 addition of forces 46 air 121-2, 125-6, 319, 322-3, 324 air and sound 167, 168-70, 173-4 air pressure 70, 71, 174, 218 air resistance 35, 36-7, 40, 85, 86 alarm systems 138, 219, 262, 264-5, 270, 272, 328 alcohol-in-glass thermometers 134, 135 alpha decay 323 alpha (α) particles 310-11, 320-4, 328 alternating current (a.c.) 226, 254, 265, 293, 294-7, 300 amber 236, 248 americium-241 323, 328 ammeters 246-7, 248, 250 amplitude (A) 171-2, 202 amps (A) 246, 247 analogue clock 9 analogue meters 246 analogue systems 270-1 AND gates 271-2 angle of incidence (i) 180, 183-4, 186, 187, 188, 190, 207 angle of reflection (r) 180, 183, 187, 207 angle of refraction (r) 183, 186, 188 anticlockwise moments 55-6, 58, 284, 287 appliances 219, 254, 255, 273, 274 approximate answers 300 areas of pressure 72 areas under graphs 23 argon 331 armatures 282, 283 arrangements of particles 120 artificial radiation 319-20 astronomy 1, 191, 216 atmospheric pressure 70-2, 73, 134 atomic bombs 318, 319 atomic nuclei 81, 240, 307, 308-14, 321, 322, 323 atomic physics 307-31 atomic structure 308, 309-11 atoms 120, 139, 152, 236-7, 240, 247, 307-14, 321-2, 324-6 attraction of charges 235, 236-7, 239, 240, 281 attraction of magnetic poles 225, 227, 228, 281, 284 attractive forces 123 average kinetic energy 133 average speed 16 average thickness 3 axis of a lens 191, 192-3

axis of symmetry 58 background radiation 319, 321 back-scattering 310 bacteria 191 balanced equations 323 balanced forces 37, 40, 54-6 balances 39 balancing 53-4, 56, 58 bar magnets 225, 226-7, 228, 229 barometers 71 batteries 80-1, 82, 83, 97, 226, 234, 244, 245-48, 249, 255, 267, 282 beam balancing 53-4 Becquerel, Henri 320, 322, 325 becquerels (Bq) 326 bed bugs 153 bending forces 64 bending of light 182-4, 193 beta (β) particles 310, 321-4, 325, 327, 328, 330 beta decay 323, 324-5, 327, 328, 330 bicycles 52, 104, 293 Big Bang theory vii, 115, 307 bimetallic strips 138 binary numbers 270 biogas 98 biomass fuels 97, 98, 100 body electricity 234, 245 body temperatures 79, 132, 149, 155 boiling 100, 117, 118, 119, 120, 122, 123, 140-1 boiling points 117, 118, 119, 120, 122, 123, 134 bonds 123, 144 booster rockets 35 Boyle's law 126-28 braking 34, 36, 41, 104 breaking waves 200 'broken stick' effect 182-3

buckling 69, 138 buzzers 261, 283 cables 244, 273-4 calculation of acceleration 17-26 calculation of current 301 calculation of density 7, 8 calculation of distance 17-20, 20-1 calculation of energy 87-90, 256 calculation of force 41-2 calculation of moments 55-6 calculation of power 109-10, 301 calculation of pressure 72 calculation of resistance 252 calculation of speed 16, 17-26 calculation of work done 105-8 calibration 3, 134, 136 calipers 5 cameras 15, 155, 191, 217, 219-20 cancer 217, 318, 319, 327, 328, 329 candle wax 119 car speed 15, 17, 19, 21, 41 carbon-14 323, 327, 330 Carboniferous era 98 cartridge fuses 274 cavity wall insulation 157, 158 cell radiation 327-8, 329 cellphones 219, 220 cells (batteries) 245, 247, 249-52 Celsius scale 133-4 centre of gravity 58, 88 centre of mass 57-9 change (Δ) 105 changes of state 116, 117-19, 123 charged objects 235, 236, 237-8 charged particles 236, 237, 311-12, 321, 324 chemical energy 80, 81, 83, 85, 98, 104 chemical reaction monitoring 330 chemotherapy 329 'chips' (integrated circuits) 244, 272, 309 circuit boards 260 circuit breakers 275 circuit components 261-5, 270, 271 circuit diagrams 245 circuit symbols 245, 260, 261, 262, 265, 271-4, 282, 283 circuits 260-75, 283 circumference measurement 3

Brownian motion 121, 126

brushes 284, 297

climate change 100, 159 clocks 2, 9, 69, 80, 81, 263 clockwise moments 55-6, 58 clockwork radios 83-4 coal 85, 96-7, 98-9 coils of wire 226, 228-30, 264-5, 282-88, 293-7, 299-302 collision of cars 65 collision of particles 121, 125, 126 colour 214, 215-17, 218 Columbus, Christopher 224 combined resistance (R) 266 combining logic gates 272 commutators 284, 296 compasses 224, 225, 228, 281 components 261-5, 270, 271 compression of gases 125-8 compression of waves 173, 174, 203 compressive forces 64 computers vii, 152, 190, 223, 244, 260, 270, 272, 309 concentration of forces 58 condensation 117, 122, 123 conduction 149, 150-2, 153, 157-8 conduction electrons 247-8 conductors 150-2, 158, 234, 245, 247, 274, 285-8 conservation of energy 84-5 conservation of momentum 45 constant speed 16, 22, 24, 37, 40, 107 contact force (C) 35, 56, 58, 106 contamination 319, 323 contraction 122, 133, 137 convection 149, 152-4, 157, 158 convection currents 97, 153, 157, 158 conventional current 248, 288 converging lenses 191-4 conversion of energy 83-4 conversion of units 20 cooling 86, 115, 118, 132, 136, 137, 149 copper 138, 144, 228-9, 245, 285, 322 cosmic rays 319 coulombs (C) 240, 254-5, 301, 311 count rates 320, 326, 327 crests of waves 171, 173, 174, 200, 202, 203, 205, 218 critical angle 188, 189 crocodiles 79 cross-sectional area of wire 254 crude oil 119 current (electric) (I) 81, 82, 84, 152, 261, 266-70, 273-5, 282-8, 293-7, 300-1 current and electric circuits 261, 264-5, 268-9, 273-4 current and electromagnetic induction 293-7, 301-2

climate 142, 149, 158-9

current and magnetism 226, 228-30, 282-6 current ratings 274 current-voltage characteristic 253-4 curved line measurement 3 curved paths 41, 190 cut glass 214

dams 70, 80, 99, 100, 101 data-loggers 118, 119, 151 deceleration 21, 22, 26, 34, 36, 40, 41 deformation 64-5, 67 demagnetisation 226 density (p) 6-8, 71, 73, 125, 152, 153, 154 density calculation 6, 7 density measurement 8 density of mercury 71, 73 density of water 6, 7, 71, 73 depth (h) 70, 73 diagnosis 329 diameter of wire 251, 254 diamonds 118, 150, 152, 182, 187, 188-90, 214 diffraction of waves 209-10 diffusion 122 digital clock 9 digital meters 246 digital systems 244, 246, 270-3 diodes 248, 261, 265 direct current (d.c.) 226, 245, 265, 282, 284, 293, 294, 300 direction of current 230, 265, 284, 285, 294, 297 direction of force 34, 35-6, 40, 41, 44, 46, 54, 104, 105, 285, 324

direction of velocity 25, 46 direction of waves 203-4, 206-7 discharges 235 dispersion of light 216, 218 displacement measurement 4 dissolved substances 118, 122 distance from pivots 53-4, 55, 56 distance measurement 2, 5, 20-1, 169 distance moved 104-7, 155, 168-9 distance-time graphs 20-1 distillation 119 diverging lenses 191-2 DNA 327, 330

door bells 230, 282

double glazing 157-8 drag 35, 36, 40, 200, 201, 207

Doppler effect 15

direction of light 179, 180, 182-7, 215, 218

direction of magnetic fields 225-6, 228, 282, 284

dynamo effect 293-4 dynamos 293

earth wires 273-4 earthquakes 165 Earth's average temperature 96, 115 Earth's gravity 34, 35, 37-8, 40-1, 58, 70, 87 Earth's magnetic field 225 echoes 168-9 effective resistance (R) 266 elastic deformation 64, 65 elastic energy 81, 84, 89 elastic limit 67 electric bells 282 electric charge (Q) 235, 239-40, 246, 247, 248-9, 255 electric circuits 260-75, 283 electric currents (I) 81, 82, 84, 152, 261, 266-70, 273-5, 282-8, 293-7, 300-1 electric field lines 230, 239 electric fields 223, 239-40, 324-5 electric force 239-40, 246, 248 electric motors 282, 283-5, 287, 293 electric shock 234, 245, 273, 275

electrical appliances 254-5, 273, 274, 275 electrical cables 273-4, 298 electrical conductors 150-2, 245, 247, 274

electrical contacts 245 electrical discharge 235 electrical energy 80, 81-2, 84, 86, 87, 248, 293, 297, 298 electrical power 255-6, 293-7, 301 electrical quantities 243-59 electrical resistance (R) 134-6, 229, 249-54, 261-3, 266-70, 301

electrical safety 273-5, 298 electrical sparks 234, 235, 284 electricity 80, 82, 83, 85, 86, 89, 223, 234-88, 292 electricity generation 80-4, 86, 89, 97, 99-100, 101, 293-7 electrocution 234, 245, 273, 275

electromagnetic coils 223, 226, 228-9, 264-5, 282-8, 293-7, 299-302

electromagnetic forces 281-8 electromagnetic induction 292-302 electromagnetic radiation 82, 155, 321, 322 electromagnetic spectrum 216-20 electromagnetic waves 155, 200, 202, 204-5, 217-20 electromagnetism 281 electromagnets 223, 228-30, 264, 275, 282-3, 293 electro-motive force (e.m.f.) 250, 254, 255, 293, 294, 295, 296, 297, 300

electron beams 287-8

electron charge 240 electron flow 248, 288 electronic circuits 260, 262, 264-5, 270, 271 electronic temperature probes 115, 118, 133, 135, 136, 263 electronic timers 9, 17-18, 169-70 electrons 307, 308, 309, 311, 321, 322, 323 electrons and electricity 152, 236-8, 239-40, 246, 247-8, 287 - 8electrostatic charge 235-9 elements 312-4 emitter current 265 emitters 156 endoscopes 190 energy 1, 79, 80-1, 135-139 energy calculations 87-90 energy conservation 84-5 energy consumption 96-7, 98 energy conversion 83-4 energy costs 99, 100 energy efficiency 79, 85-6 energy flows 85 energy losses 298, 301 energy of particles 122, 123, 125, 133, 139, 141, 144, 152 energy resources 96-101 energy saving 301 energy stores 80-2, 83-4, 89, 98, 99, 101, 104 energy transfers 79-95, 149-61, 256, 297 energy transformations 79-95, 256, 293 environmental impact 100 equilibrium 54, 55, 56, 58 evaporation 101, 117, 122-3 expansion 115, 137-9, 152, 153, 154 expansion joints 138 express trains 21, 25 extension of springs 66-9 extension-load graphs 66-7 extrapolation 181

Faraday, Michael 293, 294, 296
fault detection 329
ferrite 225
ferrous materials 225
fibre optics 190
filament light bulbs 86
Fleming's left-hand rule 286–8, 324
Fleming's right-hand rule 296
floating 7, 35
flow of current 245, 247–8, 265, 284, 287
fluid pressure 70, 73

focal point (F) 191-3, 194 food irradiation 329 forces (F) 1, 34-78, 123-5, 281-8 forces and electromagnetism 281-8 forces between magnets 225, 228 forces between particles 123 fossil fuels 96-7, 98-99, 100, 101 fractional distillation 119 fractional scales 5-6 Franklin, Benjamin 234, 236, 240, 248 free fall 38, 40 freezing 142, 149, 153 freezing points 117, 134 frequency of a.c. supply 295 frequency of sound (f) 171-2, 217-18 frequency of waves (f) 202–3, 205–6, 218 friction 34, 35, 36, 46, 85, 86, 97, 104, 105, 236 fuel consumption 89, 96-7 fuels 80-1, 83, 85-6, 89, 96-7, 98-99, 100, 101, 320 fundamental forces of nature 239-40, 307 fundamental particles 307 fuse boxes 275 fuse wire 274 fuses 274 fuzzy models 311

Galileo Galilei 1, 2, 133-4, 135, 191 gametes 328 gamma (y) rays 310, 319, 321, 324, 328-30 gas density 6, 7 gas pressure 70-1, 125-8, 138 gases 117, 121, 122, 125-8, 137-9, 141, 170 gas-fired power stations 100 Geiger counters 320, 326, 329, 330 Geiger-Muller tubes 320 generators 82, 84, 89, 97, 99, 101, 171, 292, 293, 294-5, 296-7 genetic fingerprinting 330 genetic mutations 328 geothermal energy 100 glass 137, 138, 139, 151-2, 157-8 glass and light 183, 184, 186, 188-9, 190, 192, 206 glass and wave speed 206-7 global warming 100, 159 gold 7, 65, 142, 245, 310, 311 gradient of graphs 20, 22, 24, 26, 66, 67, 142 graphite 261 graphs of alternating current 296 graphs of Boyle's law 127

G-force 34

graphs of distance moved 21–2 graphs of extension 66–9 graphs of radioactive decay 325, 326, 327 graphs of speed 21–3, 26–7, 40 graphs of temperature 117, 118, 142–3 graphs of waves 171, 202, 203 gravitational field 40 gravitational potential energy (g.p.e.) 80, 83, 85, 87–8, 104, 106, 107 gravity 1, 34, 37–8, 40–1, 58, 70, 87, 88, 101, 104, 106–7

half-life 325-7, 330 hammering 65, 137, 226 hard magnetic materials 225 hazards 188, 220, 273-4, 298, 323, 328 hearing 168, 171-2 heat energy 80, 81, 82, 83, 84, 85, 86, 97, 115, 149-59, 219 heat radiation 96, 101, 155-7, 203, 216 heat-sensitive cameras 155 height (h) 88, 106, 107 helium atoms 101, 118, 158, 312, 313-14, 321, 323 Hershel, William 216 hertz (Hz) 171-2, 203 Higgs boson 307 high pressure 72, 100 high voltages 254, 270, 298, 300, 301 high-speed trains 21 home insulation 157-8 Hooke's law 67-9 hot objects 81, 82, 155, 156, 157, 217 house wiring systems 267, 273-4 hydrocarbons 98 hydroelectric power 80, 99, 100, 101, 292 hydrogen atoms 101, 309, 313

ice 116, 117, 144, 145
ice density 7
images 120, 170–1, 180–2, 190, 192–3, 194, 329
impulse 44
inaccuracies 3, 10
incident rays 180, 183
induced current 292–302
induced magnetism 226–7
induction of charge 237–8
inelastic deformation 65
information transport 244
infrared radiation 17, 82, 155, 156–8, 203, 216–18, 219
infrasound 172
input signals 271–2
input transducers 262

insulators 150, 158, 245 integrated circuits 244 internal energy 81, 133, 157 international units 2, 4, 16, 42, 72, 106, 110, 247, 255 interrupt cards 18 invar metal 138, 139 inversely proportional to 127 inverted images 181 ionisation 323-4, 327-8 ionising radiation 323-4, 328 iron 217, 225-6, 282, 300 iron cores 229, 299, 300-1 iron filings 228 irradiation 319, 329 irregularly shaped objects 4, 58-9 isotopes 313-14, 327-8

joules (J) 85, 105, 106, 110, 254

lightning 168, 234, 235, 281

kinetic energy (k.e.) 80, 83, 84, 85, 89, 104, 107, 110, 293, 322 kinetic model of matter 116–28, 138 knots 16

labelling 330 lamina 58, 59 Large Hadron Collider (LHC) 307 laser beams 167, 178, 179, 190, 218 latent heat 144-5 latent heat of fusion 144-5 latent heat of vaporisation 144 law of reflection 180, 181, 187-88 lawnmowers 275 lead 322, 324 length measurement 2, 3-5 length of wire 249, 254 lenses 191-4 lift force 35, 41 lifting 41, 53, 80, 82, 83, 88, 104-5, 106, 109 lift-off 35-7, 83 light 178-99 light bulbs 80, 82, 84, 85-6, 110, 155, 179, 192, 244, 245, 265, 267, 268 light energy 80, 81, 82, 84-5, 86, 87, 97 light gates 9, 17-18 light rays 180-4 light sensor circuits 262-3 light waves 200, 203, 206, 208, 209 light-dependent resistors (LDR) 262-3 light-emitting diodes (LED) 265

lightning conductors 234 limit of proportionality 67 linear scale 135 lines of force 239 liquid density 8 liquid-crystal thermometers 132 liquid-in-glass thermometers 132, 134, 135 liquids 3, 117, 120, 121, 122, 123-4, 137, 139, 152 living cells 327-8 load 65-9 lodestones 224 logic gates 270, 271-3 longitudinal waves 203-4 loudness 171-2 lowest common denominator 270 lubrication 86 lung cancer 328 macroscopic models 248 magnetic field lines 228, 230, 300, 282, 293, 296, 300 magnetic fields 228-1, 281, 286-7, 287-8, 293, 296, 324-5 magnetic levitation (mag-lev) 223 magnetic materials 225 magnetic poles 224, 225-30, 235, 281, 284, 286, 293-4, 295, 296 magnetic strength 228, 229, 230, 285 magnetisation 224, 225-6, 264, 282 magnetism 223, 224-30, 281 magnets 223, 225-7, 228, 284, 293-4, 295, 296 magnifying glasses 191, 194 mains electricity 83, 254, 265, 273, 275 manometers 70-1 mass 41-2, 57-9, 87, 88, 89, 105, 125-7 mass measurement 8 mass of electron 309, 312 mass of hydrogen atom 309 mass of neutron 312 mass of proton 312, 322, 323 mass spectrometers 330 measurement 2-12 measuring cylinders 3, 4, 8 mechanical energy 293 medical radiation 218-20, 318, 319, 328, 329 melting 117, 118, 119-20, 122, 134 melting points 118, 119, 136, 261 meniscus 3 mercury barometers 71

metal bars 137 metals 118, 136, 137-38, 140, 229-30, 261 meters 246-7, 248, 249, 250, 293, 294 metre rules 3, 58 metres (m) 2, 3 microbes 329 micrometer screw gauges 5-6 microprocessors 272 microscopes 120-1, 191, 309 microscopic models 248, 321 microwaves 219, 220 mirror images 181 mirrors 178, 179-81 mobile phones (cell phones) 219, 220, 270 model circuits 244, 248 moments of forces 53-7 momentum 44-5, 287 monochromatic light 218 Moon's distance 178 Moon's gravity 38, 87 motion 15-28, 34-47, 97, 200, 293-4 motion of particles 120-1, 126 motor effect 285, 293, 324-5 motors 282, 283-5, 287, 293 multi-flash photographs 38 musical instruments 166, 167-68, 170-1

NAND gates 272 national grid 298 natural background radiation 319 negative charge 234, 235-7, 239-40, 246, 247-48, 309-10, 311, 321-3 negative terminals 245, 246, 247, 249, 251 neutral charge 236, 237, 240, 309, 311 neutron numbers (N) 313 neutrons 307, 309, 311-12, 313-14, 321, 322, 323 Newton, Isaac 1, 215 newtons (N) 35, 37, 38, 72, 106 night storage heaters 140 noise 86 non-linear scale 136 non-metals 140, 150, 151-2 non-renewables 100 NOR gates 272-3 normal 180, 183, 184, 186, 188, 192, 207 north poles (N) 224, 225, 227, 228-30, 239, 281, 284, 296, 297 NOT gates 271-3 nuclear energy 81 nuclear fission 99

mercury thermometers 135

mercury density 71

nuclear fuels 81, 99, 319
nuclear fusion 101
nuclear power 81, 101
nuclear power stations 318, 320
nuclear species 313
nuclear weapons testing 319, 320, 330
nucleon numbers (A) 313, 323
nucleons 311, 312–13
nucleus of atom 81, 240, 307, 308, 309–11, 311–14, 321, 322, 323
nuclides 313

ocean currents 158, 159 octadecanoic acid 118 Oersted, Hans Christian 281 ohms (Ω) 250–1 oil reserves 99 optical fibres 190 OR gates 271–3 oscilloscopes 170–1, 173, 350 output signals 270–3 output transducers 262 oxygen 83, 87, 98–99 ozone layer 217

packing of particles 120, 121 parachutists 40 parallel connection 250, 266, 267, 269-70 parallel rays 192-3 particle model of matter 119-23, 125-28, 173, 307, 308-14 pascal (Pa) 72 pencil sharpener rule 282 pendulums 2, 9-10, 80 penetrating power 322, 328-9 percussion instruments 166, 167 period of pendulum swing 10 period of vibration (T) 171 period of waves (T) 202-3 Periodic Table 312 permanent deformation 65, 66, 67 permanent magnets 225-7, 285, 293 phosphorescent rocks 320 photocells 97 photographic film 217, 320, 328, 330 photosynthesis 96, 98, 330 physical states of matter 117-19, 119-22 pitch of sound 168, 171-2, 217 pivots 53-4, 55-8 plane mirrors 180-1

plane waves 206, 207

'plum pudding' model of atom 309–10 Plumb-lines 58-9 plutonium 99 pollen grains 121 polymers 120, 150, 245, 247 polythene rods 236, 237 positive charge 234-40, 309-10, 311, 321-2, 324 positive terminals 245, 247, 249, 251 potassium manganate(VII) 153 potassium-40 331 potential difference (p.d.) (v) 249-51, 267, 252-6, 267-8 potential-divider circuits 267 potentiometers 261 power (P) 108-10, 255, 293-7, 301 power equation 255, 301 power lines 297-8 power losses 298, 301 power ratings 110, 255 power stations 80, 81, 82, 86, 97, 99, 100, 244, 254, 293, power supplies 226, 245, 246, 247, 249, 250, 252, 254-5, 267, 268, 269, 270, 275, 285, 292-302 precision of measurements 2, 3, 5-6 pressure (p) 69–73, 125–8, 138 pressure measurement 70-1 primary coils 299-300, 301 principal focus (F) 191-2, 193, 194 principle of conservation of energy 84-5 principle of conservation of momentum 45 prisms 215-16, 217, 218 proportional to (∞) 127 protactinium-234 327 proton charge 240 proton numbers (Z) 313, 322 protons 240, 307, 309, 311-14, 321-2, 323 pure notes 171 pure substances 118-20 Pyrex glass 138, 139

quantum theory 311 quarks 307

radar speed 'guns' 15 radiation 314, 318, 319–25, 327–8 radiation (heat) 82, 149, 155–7, 157–9, 216 radiation burns 327 radiation detection 320, 328–9 radiation sources 319–20 radiation therapy 318, 319, 329

radioactive decay 99, 314, 320-2, 323, 325-7, 328, 330-1 rubber band stretching 68, 81 radioactive labelling 330 rules for measurement 3, 5 radioactive substances 81, 99, 100-1, 310, 318, 319-20, running 80 322-4, 325, 327-29 Rutherford scattering 310 radioactive tracing 329-30 Rutherford, Ernest 310 radioactivity 310, 314, 318-31 radiocarbon dating 323, 330-1 safety (electrical) 273-5, 298 radioisotopes 327-31 salty water 118 radiowaves 205, 206, 219 satellite signals 2, 88, 178, 217, 219 radon 319, 328 satnav 2 rainbows 214, 215 Saturn 96 random processes 320-1, 326 scalar quantities 25, 46, 89 range of measurement 133, 135, 171-2 scales in music 166 'rare-earth' magnets 225 scanning tunnelling microscopes 309 rarefaction of waves 173, 174, 203 scrap metal 230 ray boxes 179, 180, 183, 187-8 sea waves 200, 173, 200, 201, 202, 203, 205, 206 ray diagrams 181-2, 192, 193, 194, 206 secondary coils 299-300, 301 real images 181, 192-3 see-saws 53-4, 55, 56 recoil 322 sensitivity of measurement 132 rectification 265 series connection 247, 250, 255, 266, 267, 268 rectifiers 265 shape changes 64, 117, 121 reflection of light 179-82, 187-94, 208 short circuits 245 reflection of sound 168 short intervals of time 9-10 reflection of waves 203, 206-7, 208 SI units 4, 6, 16, 42, 72, 106, 110, 247, 255 refraction of light 182-7, 208, 215, 217, 218 signal generators 171 refraction of waves 207, 208 silicon 244, 300, 309 silver 7,65 refractive index 189 refrigerators 97, 138, 153 silver chloride 217 regularly shaped objects 3-4, 8 sine graphs 202 relative charge 311-12 size changes 64, 117 relative mass 311-12 size of images 181, 192-3 relays 265, 270, 282-3 skin cancer 217 remote controls 219 'slinky' spring waves 203 renewables 100 slip rings 296 repulsion of charges 235, 237, 239, 281, 310 slope of graphs 20, 22, 24, 26, 66, 67, 142 repulsion of magnetic poles 225, 227, 228, 281, 283-4, 285, 297 smoke cells 121 reservoirs 99 smoke detectors 272, 323, 328 residual-current devices (RCD) 275 Snell's law 186-7 resistance (R) 135-6, 229, 249-54, 261-3, 266-70, 301 snow 116 resistive tracks 262 soft iron core 225, 226 resistors 135, 248, 249, 250, 251, 252-4, 261-3, 266-70 soft magnetic materials 225, 300 resultant forces 37, 46, 54, 56 solar cells 83-4, 97, 100, 101 solar energy 97, 100 rheostats 262 right-hand grip rule 282 solar panels 97, 101 ripple tanks 201, 202, 203, 206, 207 'solar system' model of atom 308, 309 ripples 182, 201–4, 206–10 solenoids 228-9, 230, 282 rivets 137 solidification 118 rock dating 331 solids 116, 117, 118, 120, 121, 122, 123, 139 rockets 35, 46, 83, 85, 223 solids deformation 64-9 solids density 6, 8 roller-coaster rides 34

sound 166-77 sound energy 81, 82, 83-6 sound waves 172, 173, 200, 201, 202, 203, 204, 206, south poles (S) 225, 227, 228, 229, 230, 239, 281, 284, 296 space 96-7 space shuttle 35 spacecraft 1, 16, 35, 83, 97, 107, 115, 223 sparks 234, 235, 284 specific heat capacity (s.h.c.) 141-3 specific latent heat 144-5 spectra 214-20 speed (v) 15, 16-20, 89 speed cameras 15 speed measurement 15-28 speed of air molecules 126 speed of light (c) 2, 178, 186, 205, 207, 218, 321 speed of sound 126, 168-70, 203 speed of waves (ν) 203, 205–6, 218 speedometers 15 speed-time graphs 21-3, 26-7, 40 spherical particles 120 split-ring commutators 284, 296 spring constant 67 springs 65-9, 81, 84 stability 52, 57-9 standards of measurement 2, 38 states of matter 117-19, 120-2 static electricity 234-40, 281, 310 steady speed 16, 19, 20, 21, 22, 107 steam 100, 117, 293 steel 206, 225, 226, 227, 230 step-down transformers 299 step-up transformers 299 sterilisation 329 stiffness of springs 67 stopclocks and stopwatches 9-10, 16 storing energy 80-2, 83-4, 89, 98, 99, 101, 104 strain energy 81, 84 strength of magnetic field 228, 229, 230, 285 stretching 64, 65-9, 81 string instruments 167 sunlight 97, 98, 99, 100, 101, 182, 214, 217 surfaces 156, 157-8, 168, 179-80, 182, 183, 188 suspension 121 switches 80, 230, 245, 263-5, 267, 275, 282-3 symbols for elements 312 symbols in circuits 245, 260, 261, 262, 263, 265, 271, 272, 273, 282

symmetry 58, 59

Systeme International d'Unites (SI units) 4, 6, 16, 42, 72, 106, 110, 247, 255 telecommunications 190 televisions 190, 219, 265, 270 temperature 25, 117, 118-9, 122, 123, 125, 127 temperature and magnetism 226 temperature and resistance 135-6, 263 temperature differences 137-9, 142-3, 144 temperature measurement 118, 119, 132, 133-7, 263 temperature of planets 115 temperature of space 115 temperature of spectrum 217 temperature of Sun 96, 101, 115, 217 temperature scales 133-5 temperature sensors 115, 271 temperature-time graphs 117, 118, 142, 143 tensile forces 64 tension 41 terminal velocity 40 terminals 245, 246, 247, 249, 251, 261-2, 263 TGV trains 21 thermal (heat) energy 80, 81, 82, 83, 84, 85, 86, 97, 115, 149-59, 219 thermal capacity 140 thermal equilibrium 133 thermal expansion 137-39 thermal physics 115-63 thermal properties of matter 132-48 thermistors 135-6, 261, 263-4, 265 thermocouples 136 thermometers 118, 132, 133-7 thermos flasks 158 thickness measurement 3-4, 5-6, 328 thickness of cables 274, 301 thrust 35, 46 thunder 168 tidal power 101 time and electricity 244, 248-9 time and power 109, 255 time and speed 15-28 time and waves 202-3 time measurement 2, 9-10 'time-of-flight' method 170 torque 287 torsional forces 64 total internal reflection (TIR) 187-89, 190, 214, 215 toughened glass 138

traffic monitoring 15

transducers 262

transformation of energy 79-89, 256 transformer equation 299 transformers 230, 261, 298-302 transverse waves 203-4 trip switches 249, 275 trolley speed 17 troughs of waves 171 truth tables 271-3 tsunamis 165 tumours 327, 329 tuning forks 173-4 tuning of instruments 173 turbines 80, 89, 97, 99, 100, 101, 293 Turin shroud 330-1 turning effect of forces 52-9, 284, 287 turns of coils 284, 285, 287, 299-300

ultrasound 172 ultraviolet radiation 82, 155, 217, 218 underground water 330 uniform gravitational field 40 unit conversion 20 units of acceleration 25, 26, 42 units of Boyle's law 127-8 units of energy 104 units of frequency 202-3 units of measurement 2, 4, 6, 16, 35 units of moments 44, 55 units of power 110 units of pressure 71, 72 Universe origins 115, 307 unmagnetised magnetic materials 225-6, 227 upper limit of hearing 172 upright position 52, 57-8 upthrust 35, 69 uranium 81, 99, 101, 313, 319-20, 322, 323, 325

vacuum 157–8, 173, 184, 186, 203, 205, 218, 287 vacuum (thermos) flasks 158 vacuum tubes 287–8 variable resistors 261–2, 267, 270 vector quantities 25, 40, 46, 286 vector triangles 46 velocity 25–6, 40, 41, 44, 46 Venus 96 Vernier calipers 5 vertical height (*h*) 25, 88, 106 vibration of particles 120, 123, 173 vibration of sound 167–68, 170, 171, 173, 174 virtual images 181, 192, 194

visible light 216–8
voltage (V) 247–50, 253–4, 256, 262, 264, 270–1, 293, 297–298
voltage in circuits 266–8
voltage measurement 136
voltage of power supply 296–300
voltmeters 136, 249–50, 260, 261
volts (V) 254–5
volume measurement 4, 6, 7, 8
volume of gases (V) 123–28, 138

warning signs 298, 323, 328 wasted energy 80, 86, 110 water 79, 80, 86, 97, 98, 116, 117, 118-9, 121, 122, 123, 132, 133-4, 140-1, 142, 144, 150-1, 153, 159 water and electricity 245, 248 water and light 201-4, 206-7 water and sound 167 water cycle 101 water density 7, 9, 71, 73 water flow 159, 330 water power 99, 100, 101 water pressure 69-70, 73 water vapour 100, 122 water waves 200, 201-2, 203, 204, 206, 207, 208 watts (W) 110, 255-6 wave power 97 wave properties 200-10 wave speed (ν) 203–6 wave theory 206-7 wavefronts 206, 207 wavelength (λ) 202, 205-6, 209, 218-19 waves 155, 165-222 wax 118-19, 150-1 weighing machines 68 weight 25, 35, 37-8, 40, 53-8, 70, 79, 87-8 weight measurement 2, 6 weight spreading 68 white light 215, 216 wind instruments 166, 167 wind power 89, 97, 99, 100, 101 wind speed 46 wind turbines 89, 97 wires 226, 228-9, 234, 237, 245, 248, 249, 251, 254, 282 - 3

X-rays vi, 218, 219-20, 311, 319, 321, 324, 329

work done (W) 104, 105-8, 109, 110, 297

wood burning 97, 98

wood density 6, 7

Acknowledgements

Cover image KTS Design/SPL; p. vi(*l*) AJ Photo/SPL; p. vi(r), SPL; p. vii(l) Mark Garlick/SPL; p. vii(r)Volker Steger/SPL; p. 1 NASA/SPL; 1.1 Andrew Brookes, National Physical laboratory/SPL; 1.8 GoGo Images Corporation/Alamy; 2.1 TRL Ltd/SPL; 2.2 Nigel Luckhurst; 2.5 Brian F. Peterson/Corbis; 2.8 Alejandro Ernesto/EFE/Corbis; 3.1 Nelson Jeans/ Corbis; 3.2 Scott Andrews/Science Faction/Corbis; 3.6 Eric Schremp/SPL; 3.12 Stockshot/Alamy; p. 42 SPL; 4.1 Frans Lemmens/zefa/Corbis; 4.8 NCNA, Camera Press London; 5.2 Gustoimages/SPL; 5.3 Photostock-Israel/Alamy; 5.8 SPL; 5.9 Colin Cuthbert/SPL; 5.10 Imageboker/Alamy; 5.11 Alexis Rosenfeld/SPL; 6.1 Jeff Rotman/naturepl; 6.5 Visions of America LLC/ Alamy; 6.6 European Space Agency/SPL; 6.8 Nigel Luckhurst; 6.11 Andrew Lambert/SPL; 6.13 NASA/ SPL; 6.15 SPL; 7.1 Jim Wileman/Alamy; 7.3 Liba Taylor/Corbis; 7.4 Ryan Pyle/Corbis; 7.5 Martin Land/SPL; 7.6 BNFL; 7.7 Worldwide Picture Library/ Alamy; 8.5 Ace Stock Limited/Alamy; p. 84 NASA/ SPL; 9.1 Caro/Alamy; 9.9 81A Productions/Corbis; 9.12 Andrew Lambert/SPL; 10.1a CC Studio/SPL; 10.1b Paul Whitehall/SPL; 10.4 Andrew Lambert/ SPL; 10.7 Andrew Lambert/SPL; 10.8a, 10.8b Andrew Lambert/SPL; 10.11 Matt Meadows/SPL; 11.1 Staffan Widstrand/naturepl; 11.2 Karl Ammann/naturepl; 11.7 Dr Gary Settler/SPL; 11.8 Sciencephotos/Alamy; 11.11 Edward Kinsman/SPL; 11.12 Justin Zsixz/ Alamy; p. 165 SPL; 12.1 Jill Douglas/Redferns/Getty Images; 12.2 John Eccles/Alamy; Bernard Richardson, Cardiff University; 12.4(t) Mode Images Limited/ Alamy; 12.4 (b) Niall McDiarmid/Alamy; 12.5 David

Redfern/Redferns/Getty Images; 12.8 Sciencephotos/ Alamy; 13.1 Royal Greenwich Observatory/SPL; 13.2 Andrew Lambert/SPL; 13.3 Hank Morgan/SPL; 13.4 Mark Bowler Scientific Images/www.markbowler. com; 13.6a Andrew Lambert/SPL; 13.7, 13.8, 13.11 Andrew Lambert/SPL; 13.13a TEK Image/SPL; 13.14 Dr Jeremy Burgess/SPL; 13.15a Andrew Lambert/SPL; 13.17 Andrew Lambert/SPL; 13.19 Nigel Luckhurst; 14.1 David Hosking/FLPA; 14.2 Rick Strange/Alamy; 14.4a, 14.4b, 14.10a Andrew Lambert/SPL; 14.11a Bernice Abbott/SPL; 14.12a, 14.12b Andrew Lambert/ SPL; 14.13 John Foster/SPL; 15.1 Nigel Luckhurst; 15.2 David Parker/SPL; 15.4 CCI Archives/SPL; 15.6 NASA/SPL; 15.9 David Frazier/SPL; p. 223 NASA/ SPL; 16.1 The London Art Archive/Alamy; 16.9 Jeremy Walker/SPL; 17.1 Photo Researchers/SPL; 18.1 Maximilian Stock Ltd/Alamy; 18.2 Martin Dorhn/ SPL; 18.3a, 18.4, 18.15 Andrew Lambert/SPL; 19.1 Rosenfeld Images Ltd/SPL; 19.3, 19.20a Leslie Garland Picture Library Ltd/SPL; 19.4a, 19.5a, 19.6a, 19.19 Andrew Lambert/SPL; 19.21 Sheila Terry/SPL; 20.1 SPL; 20.10 Andrew Lambert/SPL; 21.1a, 21.1b Adam Hart-Davis/SPL; 21.3 Alex Bartel/SPL; 21.4 SPL; 21.9 Ed Michaels/SPL; p. 237 David Parker/SPL; 22.1 David Simson; 22.2 IBM/SPL; 23.1 Radiation Protection Division/Health Protection Agency/SPL; 23.2 US Air Force/SPL; 23.4 SPL; 23.5 Pascal Goetgheluck/SPL; 23.8 Andrew Lambert/SPL; 23.14a Leslie Garland Picture Library/Alamy; 23.15 National Radiation Protection Board; 23.16 Yoav Levy/Phototake Science/ Photolibrary; 23.18 TEK Image/SPL; 23.19 P. Deliss/ Godong/Corbis

Terms and conditions of use for the CD-ROM

This is a legal agreement between 'You' (which means the individual customer or the Educational Institution and its authorised users) and Cambridge University Press ('the Licensor') for *Cambridge IGCSE Physics Coursebook CD-ROM*. By placing this CD in the CD-ROM drive of your computer, You agree to the terms of this licence.

1 Limited licence

- **a** You are purchasing only the right to use the CD-ROM and are acquiring no rights, express or implied, to it, other than those rights granted in this limited licence for not-for-profit educational use only.
- **b** The Licensor grants You the licence to use one copy of this CD-ROM.
- c You shall not: (i) copy or authorise copying of the CD-ROM, (ii) translate the CD-ROM, (iii) reverse-engineer, alter, adapt, disassemble or decompile the CD-ROM, (iv) transfer, sell, lease, lend, profit from, assign or otherwise convey all or any portion of the CD-ROM or (v) operate the CD-ROM from a mainframe system, except as provided in these terms and conditions.
- **d** Permission is explicitly granted for use of the CD-ROM on a data projector, interactive whiteboard or other public display in the context of classroom teaching at a purchasing institution.
- e If You are an Educational Institution, once a teacher ceases to be a member of the Educational Institution, all copies of the material on the CD-ROM stored on his/her personal computer must be destroyed and the CD-ROM returned to the Educational Institution.
- **f** You are permitted to print reasonable copies of the printable resources on the CD-ROM. These must be used solely for use within the context of classroom teaching at a purchasing institution.

2 Copyright

- **a** All original content is provided as part of the CD-ROM (including text, images and ancillary material) and is the copyright of the Licensor or has been licensed to the Licensor for use in the CD-ROM, protected by copyright and all other applicable intellectual-property laws and international treaties.
- **b** You may not copy the CD-ROM except for making one copy of the CD-ROM solely for backup or archival purposes. You may not alter, remove or destroy any copyright notice or other material placed on or with this CD-ROM.

3 Liability and Indemnification

- a The CD-ROM is supplied 'as is' with no express guarantee as to its suitability. To the extent permitted by applicable law, the Licensor is not liable for costs of procurement of substitute products, damages or losses of any kind whatsoever resulting from the use of this product, or errors or faults in the CD-ROM, and in every case the Licensor's liability shall be limited to the suggested list price or the amount actually paid by You for the product, whichever is lower.
- **b** You accept that the Licensor is not responsible for the availability of any links within or outside the CD-ROM and that the Licensor is not responsible or liable for any content available from sources outside the CD-ROM to which such links are made.
- c Where, through use of the original material, You infringe the copyright of the Licensor, You undertake to indemnify and keep indemnified the Licensor from and against any loss, cost, damage or expense (including without limitation damages paid to a third party and any reasonable legal costs) incurred by the Licensor as a result of such infringement.

4 Termination

Without prejudice to any other rights, the Licensor may terminate this licence if You fail to comply with the terms and conditions of the licence. In such an event, You must destroy all copies of the CD-ROM.

5 Governing law

This agreement is governed by the laws of England, without regard to its 'conflict of laws' provision, and each party irrevocably submits to the exclusive jurisdiction of the English courts. The parties disclaim the application of the United Nations Convention on the International Sale of Goods.